Augmented Mass-Spring Model for Real-Time Dense Hair Simulation

Supplementary Material

A. Biphasic Interaction

Despite various optimizations, DER-based methods remain
computationally intensive when simulating strand dynam-
ics, making them challenging to apply in complex interac-
tive scenarios involving intricate hairstyles. Consequently,
we focused on addressing the two primary limitations of the
more efficient MS method: stability and the loss of global
shape during initialization.

Based on the detailed study of Selle et al. [19], stabil-
ity issues in MS arise from collapsed tetrahedra formed by
springs between consecutive strand particles. Because of
this, our approach introduces an angular interaction with
the ghost rest-shape configuration, which prevents tetrahe-
dron collapse by maintaining an augmented stable structure
based on the connections between ghost and real particles,
as shown in Figure 1.

Figure 1. Schematic representation of the tetrahedra formed be-
tween consecutive real particles (left), and the additional real-
ghost interaction in our formulation (right). The angular one-way
force enhances stability by preventing tetrahedron collapse when
particles deviate from their original dihedral angles.

Despite the enhanced numerical stability, the use of
very stiff springs remains necessary to preserve global fea-
tures, which, in practice, reintroduces instabilities unless
extremely small time step sizes are employed. This con-
straint limits the feasibility of real-time applications. More-
over, while edge, bending, torsion, and angular interactions
maintain local shape fidelity, they fail to encode the global
hair structure. To address these challenges, we encode the
global features of the hair through the integrity interaction
with the rest shape, which establishes a relationship be-
tween each particle and its corresponding ghost based on

the total displacement of the strand. This mechanism in-
troduces an additional force that mitigates sagging and pre-
serves the global shape, independently of the particle count
in the discretization, by counteracting the weight of consec-
utive particles.

It is important to note that the two couplings we intro-
duce for the biphasic interaction function as force pertur-
bations to prevent tetrahedral collapse and encode global
features. However, there is a potential risk that these addi-
tional forces may interfere with the fidelity of the dynamics.
To mitigate this, we typically set the biphasic coupling con-
stants several orders of magnitude lower than those of the
traditional local springs, ensuring that the necessary per-
turbations are introduced to enhance the MS model while
preserving dynamic accuracy.

B. Numerical Integration

Our integration procedure, summarized in Algorithm 1, up-
dates the particle dynamics on each iteration.

ALGORITHM 1: Time integration procedure of our
framework.

Input: Current hair strands and mesh.

Output: Updated particles/mesh.
1 Procedure:

2 — Compute At = At/

3 — Define X! = X",

4 — Define Vit =vn.

s fori=1;i< M do

6 — Compute the intra-particle and biphasic interaction
7 terms, as described in Section 3.1.3.

8 — Solve the implicit Euler step for velocity update

9 givenby VI = £ (X?jll, Vi F At )

10 — Update Position X;‘H = X?fll + Ath?H .
11 end
12 — Apply inextensibility constraints to modify V7, ! and
Xn+1
M-

13 — Rasterize velocities into dynamic background volume.
14 — Solve equivalent system through FLIP/PIC routine.
15 — Transfer velocity back to particles and resolve detailed
collisions.
16 — Resolve hair-solid collisions as described in
Section 3.3.

First, we embed the head mesh S (or other solid meshes
in the scene) within two 3D volumes iy spr € R3 which
we use for hair-hair interactions and SDF computation, re-
spectively. Depending on the specific use of altitude springs
and ghost configuration, the mass-spring model of Selle et



al. [19] forms a banded matrix with seven to nine non-zero
entries per particle, which represent the local connectivity
of the system. Since we do not use two-way coupled ghosts
or altitude springs, the resulting numerical system in our
framework is strictly heptadiagional, which means the LU
decomposition can be solved exactly using only two iter-
ations, in a similar fashion as the solvers used in [9] and
[24]. In general, the implicit system for a strand will have
the form AV = b, where the biphasic interaction is in-
corporated into b, and, considering the edge, bending, and
torsional degrees of freedom, the only non-zero elements in
row ¢ are those at j = ¢ —3,...,7+ 3. In turn, we can write
the system as

‘i_j‘ggv

0, otherwise .

?

{—At2M-_1KZi7]‘Di,j,
i, =

Ai,i = (1 + AtMZ_IGZ) I + Z At2M7;I€i’kD7;’k .
keN (i)

bi = VI + ALM; ! (F” + S”) .

This represents a linear equation in R3 and can be solved
using a single forward and backward pair of sweeps. The
first sweep corresponds to the decomposition A = LU,
where the strict band size of A implies that L; ; = U; ; =
O fori—j < 3and j —+ > 3, respectively. For the other
entries in the decomposition, we first do the forward sweep
to compute

J—1
Lij=A;;— Z L; Uy,
k=max(1,i—3)
1—1
V; = (Li,i)il bz — Z Li_jv;— y
j=max(0,i—3)

with the intermediate vector V' = L~ 'b. Next, the back-
ward sweep yields

i—1

Uiy = (L)' A= D

k=max(1,5—3)

L;;Uy;| »

min (i+3,N)

Vi=Vi— Y

j=i+1

Ul,jVJ )

where the final vector V is given by the relation UV = V.

Non-Hookean Effects In order to simulate the progres-
sive loss of hair shape features under extreme forces,
we introduce non-linear tension responses in AMS by
parametrizing an elongation curve for the integrity tension
Tt which accounts for non-Hookean behavior, as demon-
strated in Figure 2.
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Figure 2. Parametrization plot for incorporating non-Hookean re-
sponses in the 77 term of the biphasic coupling.

C. Integrity Preprocessing

Although our system effectively preserves global hair fea-
tures, it still exhibits minor sagging effects during initializa-
tion. To mitigate this, we apply a technique similar to the
gravity pre-loading method proposed by [8], adapted to the
specific interactions relevant to our model. First we note
that, at initialization, all the strand springs as well as bipha-
sic terms are at equilibrium, so the only force acting on each
particle is due to its own weight w = mg. Because of this,
the initial sag stops until all the spring forces reach a new
equilibrium with the total hair weight. Moreover, all of the
internal Dofs and the angular interaction are given by the
input configuration and then evolve dynamically. However,
we can pre-process the integrity coupling of the interaction
T7 in terms of the ghost configuration to achieve an equilib-
rium.

Specifically, we consider each particle ¢ with position x;
and its corresponding ghost at position y;, = x; + Ar;,
where Ar; is the vector joining both particles. Originally,
Ar; = 0 at initialization. However, we pre-process this
value to account for sagging by setting

T[ —w; = 0. (l)
Developing this equation we get
Iﬁ]d(.’])i, yz)’f“l —w; = H]||A’I°l||’f’z —w; = 0. (2)

Solving this equation element-wise we finally get

Ar; = ﬂg. 3)

R

Translating the initial position of ghost particles to y,; = x;+
Ar; enables us to eliminate sagging at initialization.

D. Procedural Growth

We use an heuristic approach for hair growth that is divided
into two stages. First, given a pre-selected set of triangles in
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Figure 3. Parameter space exploration showing the impact of in-
creasing values of helix radius p;, and step size p- in our procedu-
ral hair growth module. We can control the curliness and length of
generated hair with these two parameters.
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Figure 4. Parameter space exploration showing the impact of in-
creasing values of the gravity influence parameter p- and step size
P~ in our procedural hair growth module. We can control the hair
deviation in the y direction using different values for p- .

the mesh, we sample p,, random root positions per triangle.
Then, we compute the initial strand direction p{;, on each
position by weighting the per-vertex normal vectors of the
root using its barycentric coordinates, and adding a noise
vector with entries from the distribution 2/(—1, 1). During a
second stage, we add sequential vertices to the strand, start-
ing from the root. Specifically, we compute

p(iiir = pf];l +p;;a3 maXx (pl—‘a 1-— ||pf];1 : (07 170)”) ) (4)
where pr fixes the maximum particle deviation, and the pro-

cedural vector pém accounts for strand changes in the ver-
tical direction, and is defined as

Py = (0, —ipy,0) (5)

with gravity influence parameter p,. Then, to incorporate
curls into our procedural growth module, we perform an
additional update step

p(iiir = ptl;lir + po (p(iiir - Hl) ’ (6)

with spiral impact factor pq, and helix vector H* described
by
H' = ((phcos(ipfreq)y 17ph5in(ipfreq)) s @)

with helix radius p;,. We demonstrate the generation capa-
bilities of our procedural growth scheme by performing two
parameter space explorations, as shown in Figures 3 and 4.
In both cases, we set pr = 0.2, preq = 1, and po = 0.017.
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