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Fig. 1. Our framework enables the fast simulation of (a) buckling and coiling e�ects for liquids with various viscosity, (b) highly viscous liquids colliding with
thin wires, and (c) the dynamics of non-viscous fluids interacting with a complex riverbed geometry.

Multigrid methods are quite e�cient for solving the pressure Poisson equa-
tion in simulations of incompressible �ow. However, for viscous liquids,
geometric multigrid turned out to be less e�cient for solving the variational
viscosity equation. In this contribution, we present an Unsmoothed Aggrega-
tion Algebraic MultiGrid (UAAMG) method with a multi-color Gauss-Seidel
smoother, which consistently solves the variational viscosity equation in
a few iterations for various material parameters. Moreover, we augment
the OpenVDB data structure with Intel SIMD intrinsic functions to per-
form sparse matrix-vector multiplications e�ciently on all multigrid lev-
els. Our framework is 2.0 to 14.6 times faster compared to the state-of-
the-art adaptive octree solver in commercial software for the large-scale
simulation of both non-viscous and viscous �ow. The code is available at
http://computationalsciences.org/publications/shao-2022-multigrid.html.
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1 INTRODUCTION
Liquids are ubiquitous in our daily life ranging from rivers and water
falls to honey and syrup. E�cient simulations of �uid phenomena
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have been extensively studied for physically-based animation. Euler-
ian and hybrid Lagrangian-Eulerian methods on regular Cartesian
grids [Foster and Fedkiw 2001; Stam 1999; Zhu and Bridson 2005] are
widely adopted for large-scale �uid simulations in visual computing.
The most time consuming part of these methods was believed to be
the projection step [Chorin 1967] where a pressure Poisson equation
is solved. Viscosity also plays an important role in �uid simulation.
Based on above methods, the decoupled variational formulation of
viscosity [Batty and Bridson 2008] introduces viscosity with accu-
rate free surface boundary conditions. Solving the extra variational
viscosity equation is an order of magnitude slower than solving
the pressure Poisson equation. In this paper, we focus on the most
common one-way coupled free surface �ow driven by prescribed
velocity boundary conditions. Speci�cally, we solve the pressure
Poisson equation and variational viscosity equation e�ciently with
another multigrid method.
Solving an equation e�ciently can be achieved by solving with

fewer unknowns, or solving faster with the same unknowns. Spa-
tially adaptive methods e�ectively reduce the degrees of freedom
(DOF) in the Poisson equation and viscosity equation [Aanjaneya
et al. 2017; Ando and Batty 2020; Goldade et al. 2019; Losasso et al.
2005, 2004]. However special care must be taken to keep the spatial
order of accuracy and the symmetry of the matrix so that e�cient
preconditioned conjugate gradient can be used. For these two equa-
tions, we observed a neglected potential of the regular Cartesian grid.
The continuous memory layout of the DOFs not only reduces cache
misses in the matrix-vector multiplication in an iterative solver, but
also allows multiple rows of the result vector to be calculated with
a single instruction. This is called single instruction, multiple data
(SIMD). This potential was exploited in elasticity problems [Mitchell
et al. 2016]. Later on, Liu et al. [2018] used SIMD to accelerate the
sparse matrix-vector multiplication in a multigrid preconditioned
conjugate gradient solver for topology optimization. We are inspired
by their work to use SIMD to accelerate matrix-vector multiplica-
tions on regular Cartesian grids, and use multigrid to reduce the
total number of multiplications. Ideally, SIMD can achieve 4⇥ to
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16⇥ speed up depending on available instruction sets, which is com-
parable to the reduction factor of DOFs in adaptive methods. This
motivates us to conduct research on SIMD accelerated multigrid
for Poisson equation and viscosity equation. However, the memory
bandwidth for retrieving matrix coe�cients and vector values limits
the actual speed up of SIMD instructions. Inspired by McAdams et al.
[2010] who used compact representations of the matrix coe�cients,
we use a similar mechanism that only keeps the non-trivial coef-
�cients near liquid boundaries. We load the default trivial matrix
coe�cients where possible, for example in the interior of the liquid,
so that all CPU cores fetch the same constant coe�cients from cache
lines.

Apparently, such a SIMD technique can be applied to all levels in
geometric multigrid [Chentanez and Müller 2011; McAdams et al.
2010]. However, geometric multigrid (GMG) necessitates a careful
design of coarse level discretizations for good convergence, and
is limited to speci�c spatial discretizations. Therefore we turn our
attention to the more versatile algebraic multigrid (AMG) which is
less explored in �uid simulation. In AMG, a coarse level matrix is
the product of coarse-�ne interpolation matrices and the immediate
�ne level matrix (the Galerkin principle). In general, the coarse
level matrix does not maintain the sparsity pattern. Fortunately,
we �nd that the Unsmoothed Aggregation Algebraic MultiGrid
(UAAMG) [Stüben 2001] maintains the stencil pattern for the 7-
point stencil in the pressure Poisson equation, and the 15-point
stencil in the variational viscosity equation on all multigrid levels.
This allows us to apply the same e�cient SIMD accelerated matrix-
vector multiplication subroutine for all levels. Analyzing the CPU
usage we found that the coarsening process is mostly serial if we use
the explicit sparse matrix format in the Eigen library [Guennebaud
et al. 2010], either due to the serial memory allocation of a large
continuous space, or a serial implementation of the multiplication.
We propose to store the matrix coe�cients in OpenVDB �oating
point grids [Museth 2013] and calculate the coarse level matrix with
a parallel implementation.

A key component in multigrid is an e�cient smoother to reduce
the high frequency errors on each multigrid level. The variational
viscosity equation is not diagonally dominant for large viscosity,
so the damped Jacobi smoother is not guaranteed to converge. Al-
though the matrix is not diagonally dominant, it is positive de�nite
after regularization, making the Gauss-Seidel method attractive.
However, the Gauss-Seidel method is serial in nature for general
linear systems. Luckily, we observe that the DOFs of the variational
viscosity equations can be easily categorized into six colors accord-
ing to the parity of the sum of the 3D indices. The diagonal term
in each row has a di�erent color than all other o�-diagonal terms.
The DOFs of the same color are updated concurrently, and di�erent
colors are updated sequentially.

Based on these observations, we develop an UAAMG framework
for both the pressure Poisson equation and the variational viscosity
equation. Important features of this framework include:

• a fast matrix-free sparse matrix-vector multiplication algo-
rithm based on Advanced Vector Extensions (AVX) instruc-
tions and default coe�cient trimmingwhich is about 3⇥ faster
than parallel row-major sparse matrix-vector multiplication;

• a stencil-preserving Galerkin coarsening strategy that builds
the coarse level matrix purely based on the spatial distribution
of DOFs and matrix coe�cients on the �ne level, without
special treatment of the boundary;

• a parallel matrix-free implementation of the coarsening strat-
egy that is 4⇥ to 10⇥ faster than explicit sparse matrix-matrix
multiplications using the Eigen library [Guennebaud et al.
2010];

• a multi-color Gauss-Seidel smoother for the variational vis-
cosity equation that is easy to implement and parallel in
nature.

In the following sections, we present our framework with rich
illustrations of our multigrid algorithm, detailed analysis of the
Poisson solver and viscosity solver for various con�gurations, and
the performance of the whole simulation pipeline in complex scenes.
Compared to the state-of-the-art adaptive variational viscosity solver
[Goldade et al. 2019] implemented in Houdini [Side E�ects Software
2021], our viscosity solver is about 3⇥ faster. Our Poisson solver is
about 2.5⇥ faster than the adaptive octree pressure projection in
Houdini, which is a variant of Lossaso’s octree solver [Losasso et al.
2005, 2004]. Overall the total run time is about 3⇥ faster per-substep
compared to Houdini.

2 RELATED WORK
Popular �uid solvers in computer graphics include Eulerian [En-
right et al. 2002; Foster and Fedkiw 2001; Stam 1999] and Hybrid
Lagrangian-Eulerian methods [Jiang et al. 2015; Zhu and Bridson
2005], Lagrangian particles such as smoothed-particle hydrody-
namics (SPH) [Bender and Koschier 2017; Ihmsen et al. 2014a,b;
Müller-Fischer et al. 2003; Solenthaler and Pajarola 2009], and Lat-
tice Boltzman methods [Lyu et al. 2021; Thürey and Rüde 2009]. For
a more thorough introduction to �uid solvers we refer to the course
notes of Bridson and Müller-Fischer [2007], Koschier et al. [2019],
and Bridson’s textbook [2016]. In this section, we mostly focus on
multigrid methods in �uid simulation and within viscosity solvers.

2.1 Multigrid
We refer the reader to Briggs et al. [2000] for a very nice introduction
to multigrid methods. We summarize some multigrid methods in
Table 1. For the pressure Poisson equation, UAAMG is not new.
Stüben [2001] wrote a concise review of the algebraic multigrid
approach including such aggregation-based variant. Although it
converges slower than the classical AMG [Ruge and Stüben 1987],
there are simple �xes that make UAAMG as e�cient as the classical
AMG for scalar Poisson problems. Zari� [2020] used aggregation
based algebraic multigrid for smoke simulation but did not discuss
the possibility of such a method for liquid simulation.We tried to use
the V cycle variant in its supplemental material for liquid simulation,
but it did not work well. It tried to implement smoothed aggregation
in the V cycle by including extra relaxations after piecewise constant
interpolation. However it did not include such relaxations when
building coarse level matrices, which was unorthodox compared
to the work of Vaněk et al. [2001]. Bolz et al. [2003] applied the
multigrid method to 2D �uid simulation. They used piecewise linear
interpolations and built coarse levels based on the Galerkin principle.
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Table 1. Summary of di�erent multigrid methods. 1st and 2nd refers to the spatial order of accuracy.

Method Problem Discretization Matrix Coarsening DOF Coarsening Interpolation Smoother

Vaněk et al. [1996] General elliptic General Galerkin Aggregation by
strong o�-diagonal Smoothed constant Gauss Seidel

Bolz et al. [2003] 2D Gas Homogeneous boundary, 5-pt FD Galerkin Vertex 4-to-1 Linear Damped Jacobi
Molemaker et al. [2008] Gas 1st Dirichlet, 7-pt FD Re-discretization Vertex 8-to-1 Linear Red-black SOR
McAdams et al. [2010] Liquid 1st Dirichlet/Neumann 7-pt FD Re-discretization Voxel 8-to-1 Linear Damped Jacobi
Chentanez and Müller [2011] Liquid 2nd Dirichlet, 1st Neumann, 7-pt FD Re-discretization Voxel 8-to-1 Linear Red-black GS
Ferstl et al. [2014] Liquid 2nd Dirichlet/Neumann, adaptive FEM Galerkin Element 8-to-1 topology aware Linear Multi-color GS
Setaluri et al. [2014] Gas 1st Neumann, Adaptive FD Re-discretization Voxel 8-to-1 Linear Damped Jacobi
Dick et al. [2015] Liquid 2nd Neumann, 7-pt FD Galerkin Vertex 8-to-1 topology aware Linear Multi-color GS
Weber et al. [2015] Liquid 1st Dirichlet, 2nd Neumann, 7-pt FD Re-discretization Voxel 8-to-1 Constant Red-black GS
Aanjaneya et al. [2017] Liquid 2nd Dirichlet/Neumann, adaptive FD Re-discretization Voxel 8-to-1 Linear Damped Jacobi
Aanjaneya et al. [2019] Viscosity Variational viscosity, 15-pt FD Re-discretization Voxel 8-to-1 Linear Local Cholesky
Zari� [2020] Gas 1st Dirichlet, 7-pt FD Galerkin Voxel 8-to-1 Constant Damped Jacobi

Our work Liquid
Viscosity

2nd Dirichlet/Neumann, 7-pt FD
Variational viscosity, 15-pt FD Galerkin Voxel 8 to-1 Constant Multi-color GS

Their linear interpolation expands the 7-point stencil pattern on
the �nest level to nine points to all coarse levels. Ferstl et al. [2014]
applied a topology aware multigrid method with Galerkin principle
to adaptive �nite element simulation of free surface �ow. However,
their �nite element formulation has inherently larger stencils, and
they reported about 2⇥ slower results than a 7-point �nite di�erence
formulation.

There are also plenty of geometric multigrid methods that build
coarse level matrices directly by discretizing the problem on coarse
levels. One of the most frequently mentioned geometric multigrid
methods for pressure projection in free-surface �ow simulations is
the work of McAdams et al. [2010]. However it only supports the
voxelized Poisson equation, which is limited to grid-aligned free
surface and solid boundaries. Setaluri et al. [2014] extended this
method to adaptive octree for smoke simulations. Aanjaneya et al.
[2017] further extended the above adaptive octree for the simula-
tion of liquids, and improved it to handle second order accurate
boundary conditions. Chentanez and Müller [2011] adopted a simi-
lar geometric multigrid approach, but they use the volume fraction
for solid boundary [Batty et al. 2007]. They used piecewise linear
interpolation instead of piecewise constant interpolation for prolon-
gation. They further adapted multigrid to handle separating bound-
ary conditions [Chentanez and Müller-Fischer 2012]. Molemaker
et al. [2008] applied multigrid methods to simple domains without
obstacles, and instead handled complex boundaries with iterative
orthogonal projections. Dick et al. [2015] proposed a geometric
multigrid method for curved boundaries. Their targeted uncommon
cases where the simulation domain is full of thin solid boundaries.
In such scenarios, a coarse level DOF is split if it is restricted from
disjoint �ne level DOFs across thin boundaries or air gaps. Without
such thin obstacles, their topology-aware improvements are not
signi�cant.
UAAMG shares similarities with GMG from [Weber et al. 2015]

in solving the pressure Poisson equation. Both methods use Ng et al.
[2009] strategy for second order solid boundary (Neumann boundary
condition), 1-to-8 piecewise constant interpolation, and matrix-free
multiplication. However, Weber et al. [2015] only showed �rst order
convergence on their Dirichlet boundary, while our method achieves
second order [Gibou et al. 2002], and theoretically works beyond

liquid simulation. The most interesting coincidence is that both
methods have the same o�-diagonal terms for solid boundaries on
all levels. The o�-diagonal term in their method is proportional
to the face liquid fraction which is averaged from 4 children face
fractions. In our method, the o�-diagonal term is the scaled average
of four children o�-diagonal terms. According to Ng et al. [2009],
the o�-diagonal term is proportional to face fraction.
Beside pressure projection, multigrids are also adopted in other

applications in graphics. For example, Xian et al. [2019] used multi-
grid with piecewise constant interpolation for real-time simulation
of elastic objects. They emphasized the importance of preserving
sparsity of coarse level matrices. Tamstorf et al. [2015] applied
smoothed aggregation multigrid to cloth simulation. Wang et al.
[2018] developed a full multigrid method for cloth simulation. Zhu
et al. [2010] used geometric multigrid with distributive Gauss-Seidel
relaxation for simulation of elastic solids. Wang et al. [2020] pro-
posed a time integration scheme for the material point method
which has a multigrid solver at its core. Liu et al. [2018] combined
SIMD operations and Galerkin coarsening based multigrid for nar-
row band topology optimization. Our work draws much inspiration
from Liu et al. [2018]in terms of SIMD acceleration and the multi-
color Gauss-Seidel smoother.

2.2 Viscosity
Recently, Larionov et al. [2017] proposed a uni�ed variational pressure-
velocity formulation for the simulation of viscous Newtonian liquids.
Their method can better preserve surface details and produce bet-
ter coiling behavior. However, their method is three times slower
than the decoupled variational formulation of Batty and Bridson
[2008]. Therefore, they concluded that the decoupled variational
viscosity is still recommended if excessive surface smoothing is
tolerable. For more discussion of the viscosity formulation please
also see the references therein. Aanjaneya et al. [2019] tried to use a
geometric multigrid method to solve the decoupled variational vis-
cosity equation. However, they quickly discovered that traditional
damped Jacobi smoother does not work well for this problem. They
proposed to use a box-smoother with local Cholesky factorization.
However, it has large overhead and the �nal pipeline was not quite
advantageous compared to an incomplete Cholesky factorization
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preconditioned conjugate gradient (ICPCG) method. Goldade et al.
[2019] discretized the viscosity equation adaptively on an octree.
Their method was up to 9⇥ faster than the uniform discretization for
the linear solve due to (up to 6⇥) reduced number of unknowns and
(up to 2⇥) fewer iterations in the diagonal preconditioned conjugate
gradient method. This adaptive viscosity solver was incorporated
into Houdini [Side E�ects Software 2021] and serves as the baseline
of our comparison.

3 FLUID EQUATIONS AND DISCRETIZATION
The control equations for incompressible viscous �uid consist of
the continuity equation,

r · �!u = 0 , (1)

and the momentum equation,

�!u C +
⇣�!u · r

⌘ �!u = �r?
d

+ r · g
d

+ �!g , (2)

where �!u C is the partial time derivative of the velocity �!u , ? is the
pressure, d is the density, �!g is the gravitational acceleration and g is
the viscous shear stress tensor. The constitutive equation between
the shear stress tensor and the velocity is given as

g = `
⇣
r �!u + r �!u)

⌘
,

where ` is the dynamic viscosity coe�cient. At the free surface, we
have g ·�!n = 0. At the solid boundary, a non-slip boundary condition
�!u = �!u BC is imposed.

We follow Batty and Bridson [2008] to solve Eq. (1) and (2), where
the viscosity solver is sandwiched by two pressure projections. First,
the advection is done and external forces are applied:

�!u ⇤ � �!u=

�C
+
⇣�!u= · r

⌘ �!u= = �!g = . (3)

We follow thework�ow of the incompressible Fluid-Implicit-Particle
(FLIP) method [Zhu and Bridson 2005] to handle the advection step
in Eq. (3). We use the midpoint rule for the time integration.
Then the pressure Poisson equation is solved,

� r2? =
d

�C
r · �!u ⇤ , (4)

and the velocity �eld is updated to be divergence-free:
�!u ⇤⇤ � �!u ⇤

�C
= �r?

d
. (5)

The viscous e�ect is addressed by solving the following equation:
�!u ⇤⇤⇤ � �!u ⇤⇤

�C
=
r · g
d

. (6)

Finally, the divergence is removed again by solving Eq. (4) and (5).
We will brie�y review the discretization of the pressure Poisson

Eq. (4) and the variational viscosity Eq. (6). We refer the reader to
the open source code of Batty [2018] for a reference implementation
of the viscous liquid simulator. Our contribution is not a novel
discretization of the equation, but a novel solver on an already
discretized system.

3.1 Pressure Poisson Equation Discretization
The pressure Poisson Eq. (4) is discretized with a 7-point stencil on
a regular Cartesian grid. We use the cut-cell method of Ng et al.
[2009] to handle irregular liquid-solid boundaries. For the liquid-
air boundary, we use the ghost �uid method [Enright et al. 2002;
Gibou et al. 2002] to achieve second order accuracy. In short, the o�-
diagonal term between two neighbor pressure DOFs as well as the
right hand side divergence contribution based on the face velocity
are weighted by the liquid face fraction. Near the free surface, an
additional value is added to the diagonal term inversely proportional
to the distance of the DOF to the free surface, leading to a pressure
value close to zero near the free surface. Please see Figure 3 for an
illustration of the matrix coe�cients.

3.2 Variational Viscosity Equation Discretization
Batty and Bridson [2008] proposed a variational interpretation of
Eq. (6). In this formulation, the traction free boundary condition is
automatically enforced. Here, we use �!u and �!u old to replace �!u ⇤⇤⇤
and �!u ⇤⇤:

min�!u

ª
d
����!u � �!u old

���2
2
+ 2�C

ª
`

����r
�!u + (r�!u ))

2

����
2

�
. (7)

The minimization of the smooth energy in Eq. (7) leads to a symmet-
ric and positive semi-de�nite system. In the discretized form, the
minimal value in Eq. (7) is obtained when the following equations
are satis�ed:

D+D �
�C

d

⇣
(+?gGG )G + (+gG~gG~)~ + (+gGIgGI)I

⌘
= Dold+D ,

E+E �
�C

d

⇣
(+gG~gG~)G + (+?g~~)~ + (+g~Ig~I)I

⌘
= Eold+E ,

F+F �
�C

d

⇣
(+gGIgGI)G + (+g~Ig~I)~ + (+?gII)I

⌘
= Fold+F .

(8)

gGG = 2`
mD

mG
, g~~ = 2`

mE

m~
, gII = 2`

mF

mI
,

gG~ = `

✓
mD

m~
+ mE

mG

◆
, g~I = `

✓
mE

mI
+ mF

m~

◆
, gGI = `

✓
mD

mI
+ mF

mG

◆
.

In above equations, D, E,F are the three components of the veloc-
ity which are face-centered, and the stress components are either
voxel-centered (gGG , g~~, gII ) or edge-centered (gG~, g~I , gGI ). Their
discrete values are calculated by �nite di�erences.
The V terms refer to the volume fractions centered at di�er-

ent positions. +? is cell-centered, +D ,+E,+F are face-centered and
+gG~ ,+g~I ,+gGI are edge-centered. The volume fractions are deter-
mined by averaging their eight subcells, following the approach of
Batty [2018], and Takahashi and Lin [2019]. A face velocity com-
ponent is a DOF if it has non-zero velocity volume fraction, or its
neighbor edge-centered volume or cell-centered volume is non-zero,
meaning it is involved in at least one row of the equation. Once a
face velocity is marked as a DOF, we set a minimum threshold for
its control volume fraction, for example 0.1. This e�ectively adds
threshold values to small diagonal terms, serving as a regulariza-
tion to the potentially singular equation system. After modifying
the minimum velocity control volume we then calculate the matrix
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Fig. 2. Illustration of the matrix coe�icients, stencil pa�ern, and update
color for one row of the variational viscosity Eq. (8). (a) Matrix coe�icients
evaluated based on viscosity and stress control volumes located at edge
centers and voxel centers, and velocity control volume located at the face
center. (b) The stencil pa�ern of one row of Eq. (8) corresponding to the D
component, as well as the values of the stencil pa�ern. The stencil involves
15 DOF, categorized into 6 colors for the multi-color Gauss-Seidel smoother,
based on the parity of the sum of their spatial indices.

coe�cients and right hand side values in Eq. (8). In the Appen-
dix we show how this control volume regularization alleviates the
singularity problem in a minimum 2D example.

We set up an equation for every DOF. Each row of the matrix has
up to 15 non-zero terms. We show the matrix coe�cients in Figure
2 (a). In Figure 2 (b), we show the spatial locations of the 15 DOFs
in one row of the equation as colored square patches on voxel faces.
They are color �lled or empty depending on the parity of the sum
of indices. The 15 DOFs are categorized into six colors used for the
multi-color Gauss-Seidel smoother in multigrid. It consists of seven
similar component terms (D, red square patches), and eight cross
component terms (E and F , green and blue square patches). We
also put corresponding matrix coe�cient as star, circles, rhombuses,
and triangles near each DOF square patch. A cross section view
of the stencil for component D with staggered grid index (8, 9,:) is
presented in the Appendix for a more detailed reference.

4 UNSMOOTHED AGGREGATION MULTIGRID
Pressure Poisson and variational viscosity equations are solved by
multigrid methods. Multigrid methods solve a system of equations
through a hierarchy of matrices where level zero is the �nest level.
Typically it starts with the discretization of an equation on a grid
with spatial resolution ⌘:

�⌘D
⌘
⇤ = 5 ⌘ ,

where �⌘ is the matrix obtained through �nite di�erence, �nite
volume or other methods, D⌘⇤ is the exact solution, and 5 ⌘ is the
right hand side term. In multigrid, starting with an initial guess D⌘ ,
a few relaxation methods such as Jacobi or Gauss-Seidel iterations
are applied but they can only reduce high frequency errors. Assume
after relaxations, we get a solution D⌘old. The error 4

⌘
old is de�ned as

the di�erence to the exact solution:

4⌘old = D⌘⇤ � D⌘old .

The residual equation holds for the current error:

�⌘4
⌘
old = A⌘old = 5 ⌘ ��⌘D

⌘
old ,

where A⌘old is the �ne level residual. Solving the above residual equa-
tion on the original �ne grid is not easier, because low frequency
errors are still hard to remove. In multigrid methods, the residual
equation is instead solved on a coarse grid, where low frequency
errors look like high frequencies again. The �ne level residual is
transferred (called restriction) to coarse grid, and the solved coarse
error are transferred back (called prolongation) to correct the current
solution. A restriction operator ' denotes the �rst step:

A� = 'A⌘old ,

where A� denotes the residual on the coarse level. In classical AMG
[Stüben 2001], the restriction operator is obtained by analyzing the
matrix coe�cients, which is important in anisotropic problems. In
some aggregation based algebraic multigrid methods [Vaněk et al.
1996], matrix analysis is also required, where �ne DOFs connected
by large o�-diagonal terms are grouped together to form a coarse
DOF. Here, we deal with structured grid and isotropic problems,
hence we can exploit the geometric information. For the Poisson
equation, a voxel on the coarse level aggregates eight voxels on the
�ne level. A coarse level voxel is a DOF, if any of its eight children
voxels is a DOF. Figure 3 shows how coarse level DOFs are de�ned
in two dimensions. In three dimensions the restriction matrix is
de�ned as

'8 9 =

(
1/8, if coarse voxel 8 covers �ne voxel 9,
0, otherwise.

Nowwe need to solve the residual equation on the coarse level. A key
question is the de�nition of �� , the coarse level matrix. Generating
the coarse level matrix is called coarsening. In UAAMG,�� in three
dimensions is de�ned by

�� := '�⌘% ,F8C⌘ % = 8') , (9)

where % is the prolongation or interpolation operator. It is the scaled
transpose of the restriction operator. Obtaining the coarse level
matrix�� through a '�⌘% sandwich is called the Galerkin principle.
On the coarse level, the residual equation is solved:

��4
� = A� ,

and the error is transferred back to correct the �ne level solution:

D⌘new = D⌘old + U%4� .

A constant U is introduced in the prolongation step. The motivation
is to improve the convergence of UAAMG in a multigrid precon-
ditioned conjugate gradient algorithm. Stüben [2001] mentioned
that setting U = 2 can improve the convergence for Poisson equa-
tion where UAAMG is used as a preconditioner because the coarse
matrix �� obtained by Galerkin principle and piecewise constant
interpolation tends to underestimate the error correction approx-
imately by half. However, when UAAMG is used as a standalone
iterative solver, U = 1 should be used to avoid overshooting and
instabilities.
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4.1 Algorithm Overview
Stüben [2001] pointed out that UAAMG is better used in combi-
nation with preconditioned conjugate gradient, `-cycle ([Briggs
et al. 2000], Chapter 3), and matrix rescaling. We refer the reader to
Algorithm 3 by McAdams et al. [2010] for multigrid preconditioned
conjugate gradient. Here, we summarize the less common multigrid
`-cycle borrowed from Briggs et al. [2000].
By default we use a `-cycle with ` = 2, which is the W-cycle.

` = 1 is the common V-cycle. We use a = 2 in the pre-smooth and
post-smooth steps. We observe no bene�ts for ` > 2 and a > 3. In
the post-smooth step, the relaxation should be applied symmetri-
cally, for example, the red-black Gauss-Seidel should be black-red
Gauss-Seidel. In the presence of moving solid boundary, for example
when a character walks in a pool, there can be enclose regions with
pure Neumann boundary conditions. In such cases, the multigrid
preconditioned conjugate gradient fails to converge. We detect such
failure and revert to standalone multigrid cycles with at least 8
iterations.

Algorithm 1: Recursive `-cycle.
Input: initial guess D; , current level ; , right hand side 5;
Output: updated D;
if ; = =!4E4;B � 1 then

solve �;D; = 5; directly;
return D; ;

end
apply a times relaxations to �;D; = 5; ; /* pre-smooth */
A; = 5; ��;D; ; /* calculate this level residual */
A;+1 = ';A; ; /* restriction */
4;+1  0;
apply ` times 4;+1  `-Cycle(4;+1, ; + 1, A;+1);
if Poisson and Preconditioner then

D;  D; + 2%;4;+1 ; /* prolongation */
else

D;  D; + %;4;+1 ; /* prolongation */
end
apply a times relaxations to �;D; = 5; ; /* post-smooth */
return D; ;

4.2 Matrix-free Coarsening
To generate the coarse level matrix�� in Eq. (9), two sparse matrix-
matrix multiplications are required. While it is readily available in
an existing sparse linear algebra library such as Eigen [Guennebaud
et al. 2010], it is slow because the stock implementation is serial.
Furthermore, to harness the power of modern CPU SIMD instruc-
tion sets, we store matrix coe�cients in 3D OpenVDB grids instead
of using an explicit sparse matrix format such as compressed sparse
row. It becomes necessary to develop a matrix-free coarsening im-
plementation tailored for our data structure.
Each pressure DOF is associated with an index triplet (8, 9,:)

and occupies the center of a voxel. The Poisson matrix is stored
in one diagonal term grid, and three o�-diagonal term grids. The

Algorithm 2: Poisson Coarsening.
Input: �ne level diagonal 3f, o�-diagonals Gf, ~f, If
Output: coarse level diagonal 3c, o�-diagonals Gc, ~c, Ic
for 8 9:c 2 ActiveCoarseDOFGridVoxels do

3  0; G  0; ~  0; I  0;
for 8 9:f 2 �2C8E4⇡$�⇠⌘8;3A4=(8 9:c) do

3  3 + 3f (8 9:f); /* affects self */
if IsFineDOF(8 9:f � (1, 0, 0)) then

if 8 9:f .G = 28 9:c .G then
G  G + Gf (8 9:f); /* affects neighbor */

else
3  3 + 2Gf (8 9:f); /* affects self */

end
end
if IsFineDOF(8 9:f � (0, 1, 0)) then

if 8 9:f .~ = 28 9:c .~ then
~  ~ + ~f (8 9:f); /* affects neighbor */

else
3  3 + 2~f (8 9:f); /* affects self */

end
end
if IsFineDOF(8 9:f � (0, 0, 1)) then

if 8 9:f .I = 28 9:c .I then
I  I + If (8 9:f); /* affects neighbor */

else
3  3 + 2If (8 9:f); /* affects self */

end
end

end
⇠ = 1.0/8.0;
3c (8 9:c)  ⇠ · 3 ;
Gc (8 9:c)  ⇠ · G ;
~c (8 9:c)  ⇠ · ~;
Ic (8 9:c)  ⇠ · I;

end

diagonal term is trivially stored with the same index. The matrix
coe�cients between current DOF and three neighbor DOFs on the
negative axis direction are also stored with index (8, 9,:). Thanks
to the symmetry of the Poisson matrix, there is no need to store the
o�-diagonal terms on the positive direction. Please see Figure 3 for
a illustration in 2D.
The coarse level matrix is de�ned as �� = '�⌘% . The term

between the 8th DOF and 9th DOF on coarse level is essentially
how 8th DOF’s children DOFs on the �ne level in�uence 9th DOF’s
children DOFs through the �ne level matrix �⌘ . We multiply both
sides by 48 , the standard basis, in which the 8th coarse level DOF is
one and others are zeros, to get the 8th column of �� . This process
is illustrated in the bottom row of Figure 3. With the input 48 , we
set the 8th DOF to be 1. Piecewise constant interpolation sets its
children DOFs on the �ne level to be 1, which gives %48 . Multiplying
the �ne level matrix �⌘ (conceptually, we never really invoke the
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expensive function), we get �⌘%48 . Every non-zero �ne level DOF
in %48 contributes a corresponding column. Finally, �ne level DOFs
contributes to its coarse DOFs by simple averaging, resulting in
'�⌘%48 .

In practice we directly compute the diagonal term grid and three
negative direction o�-diagonal term grids. In 3D, the coarse diagonal
term is 1/8 of the sum of all its children’s diagonal terms plus two
times of all o�-diagonal terms between its children, because each
child o�-diagonal term contributes to two of its children. The coarse
o�-diagonal term at the interface of 8th and 9th voxel is 1/8 of the
sum of o�-diagonal terms between all 8th voxel’s children near the
interface and 9th voxel’s children near the interface. Algorithm 2
shows this process.
Velocity DOFs are located at voxel faces. Each row of the ma-

trix has seven terms between same-component DOFs, just like the
Poisson matrix. There are three components, so this part of the
viscosity matrix is stored in three diagonal terms and nine o�-
diagonal terms. Furthermore, each row of the matrix contains eight
cross-component terms. There are three components, but again
the matrix is symmetric, so there are 3 ⇥ 8/2 = 12 individual co-
e�cients per voxel. We store these cross-component coe�cient
between six faces of a voxel with the same index (8, 9,:) in 12
grids. In the inset �gure, we plot the 12 coe�cients as colored
disks at the centers between six velocity DOFs. We use di�erent
colors to distinguish the terms. The same colors are used in Fig-
ure 4, where we show a 2D illustration of the coarsening process.

G
~

I

On the coarse level, the cross
component terms in the viscos-
ity equation are also calculated
in a column by column fashion.
We loop over three cross sections.
Each cross section contains four
cross component terms. The pro-
cess is identical to the 2D case. In
Figure 4 we show how the four
terms in a coarse level voxel are
calculated from cross component
terms in its 4/8 children voxels

in 2D/3D. The coarse level cross component term is simply a scaled
summation of a part of its children’s cross component terms. Please
see Figure 4 for a visual illustration.

4.3 Smoothers
Multigrid relies on e�cient smoothers to reduce high frequency
errors on every level. We tried many smoothers for the Poisson
equation, and found that scheduled relaxed Jacobi (SRJ) [Yang and
Mittal 2017] is slightly better than others. For the viscosity equation,
we found that only the multi-color Gauss-Seidel smoother works
e�ciently. The results are summarized in Table 2 and 3.
We began with the SPAI-0 smoother [Bröker et al. 2001], the

default smoother of AMGCL [Demidov 2019], a general algebraic
multigrid solver. SPAI-0 uses a diagonal matrix to approximate the
inverse of the matrix in the linear equation. It is parameter free,
e�cient to apply, and has low overhead to compute the matrix. It
is worth noting that Bröker et al. [2001] said SPAI-0 outperforms

damped Jacobi with optimal weight in Poisson problems, which
is 23

23+1 where 3 is the dimension. However, as suggested in our
experiments in Table 2, the SPAI-0 smoother is not as e�cient as
the damped Jacobi with l = 6/7. McAdams et al. [2010] proposed
l = 2/3, but we found it less e�cient compared to the optimal
parameter 6/7 in 3D. SRJ is an extension to damped Jacobi with
a single weight parameter. SRJ uses a di�erent weight for every
iteration, and �nds the best weight combination. We found SRJ to be
slightly faster than the damped Jacobi. We also tried the red-black
SOR with slight over relaxation l = 1.2. It is slightly faster than
red-black Gauss-Seidel.
Finding a proper smoother for the viscosity equation is indeed

di�cult as pointed out by Aanjaneya et al. [2019]. The slow conver-
gence in damped Jacobi cannot be �xed by �nding a proper weight.
Sometimes it explodes. The parameter-free SPAI-0 also explodes
sometimes. These di�cult cases have large viscosity or small grid
size �G . As demonstrated in Figure 2, the matrix is diagonally domi-
nant only if `�C

d�G2 is small enough so that the sum of o�-diagonal
terms are smaller than the diagonal.
Fortunately, the multicolor Gauss-Seidel smoother works well

for this problem. The velocity DOFs are colored according to which
component they are and the parity of the sum of their indices (Fig-
ure 2 (b)).

5 SIMD-VDB ACCELERATION
Multigrid allows the equation to be solved with a small number of
matrix-vector multiplications. Furthermore we use SIMD intrinsic
functions to accelerate the computation, and use default matrix co-
e�cients trimming to save limited memory bandwidth and improve
computation throughput.

5.1 Data Structure
We store the DOFs of the equation, and the matrix coe�cients on
OpenVDB [Museth 2013]�oat grids. In OpenVDB, voxels are stored
in leaf nodes. It provides �exible storage for data located sparsely
in space. By default, each leaf node is dynamically allocated and
contains 8 ⇥ 8 ⇥ 8 = 512 voxels. In each leaf node, there is also a
512-bit bit mask that marks the active state of each voxel. In our
Poisson solver, for example, if an index (8, 9,:) is a pressure DOF, its
containing leaf node is allocated, and the corresponding bit in the
bit mask is 1. We record the DOFs’ index in an OpenVDB int32 grid
by using the parallel exclusive pre�x sum algorithm. At the coarsest
level, this index grid is used to convert the coe�cient OpenVDB
grid into the Eigen matrix, and is solved by its library.

5.2 Matrix-free Multiplication
When the matrix-vector multiplication is implemented in a matrix-
free fashion, it involves accessing neighboringDOFs and correspond-
ing matrix coe�cients. The results are calculated concurrently in
a row by row fashion. Usually the vector optimization is left for
compilers.

The dimension of the leaf node is eight, which happens to be the
length of an AVX SIMD vector. Therefore, each leaf node contains
64 AVX SIMD vectors that are well aligned in space. For the Laplace
matrix, each DOF interacts with its six neighbors and itself. We load
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Fig. 3. 2D illustration of Galerkin coarsening operations for Poisson’s equation. Top: simulation geometry and pressure DOF at each level. Active DOFs are
denoted by red dots in red voxels. For each voxel we store the matrix diagonal term indicated by the number above the red dot, and matrix o�-diagonal terms
between neighbor DOFs indicated by numbers on the bo�om (le�) side. Bo�om: calculating the level 1 matrix coe�icients from level 0 coe�icients. Each
column of the level 1 matrix �2⌘ = '�⌘% is calculated in parallel. Starting with a standard basis 48 at level 1, we apply the prolongation operation %48 by
se�ing its children at level 0 to value of 1. We use the level 0 matrix coe�icients to calculate the intermediate level 0 stencil values �⌘%48 , and finally collect
the level 0 stencil values to corresponding level 1 DOFs with results of '�⌘%48 . This gives us the level 1 coe�icients and recursively those of deeper layers.
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calculated from those at immediate fine level. The input is a standard basis 48 at the coarse level. A�er prolongation we get %48 at the fine level. Using the
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at the coarse level are scaled summations of the fine level cross terms. In three dimensions, 1/8 is used instead in restriction.

the seven neighboring DOF SIMD vectors, multiply corresponding
matrix coe�cients SIMD vectors, and add them together to get the
resulting SIMD vectors. This process is illustrated in Figure 5. Before
we write the result, we set the non-DOF voxels in the SIMD vector
to zeros according to the active state bit mask.
In OpenVDB, SIMD vectors are organized along the I-direction.

Neighbor SIMD vectors in G and ~ direction can be easily fetched
by their starting addresses. Near the leaf boundary, we need to

fetch SIMD vectors in neighbor leaf nodes multiple times. We cache
pointers to �rst voxels in neighbour leaf nodes before all calculations
to avoid frequent hash table inquiries.
Accessing neighbor SIMD vectors in the I-direction involves

fetching SIMD vectors from two leaf nodes and merging them into
one SIMD vector. We show related intrinsic functions and a visual
illustration in Figure 6.
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The variational viscosity equation has three components and
extra cross component terms. The implementation is more laborious,
but the building blocks are still caching neighbor leaf node pointers,
fetching aligned SIMD vectors in the G and ~ neighbors, and data
permutation for the I neighbor vectors. More discussions of the
cross terms can be found in the Appendix.

In the relaxation step, the inverse of the diagonal is precomputed
in a �oat grid to avoid division instruction. In the red-black or multi-
color Gauss-Seidel, only the even or odd voxels are updated. This
can be done by blending instructions with 010101012 as masks.

5.3 Default Coe�icients Trimming
For both Poisson equation and viscosity equation, the diagonal term
is the same in the interior of the liquid, and the o�-diagonal terms
are the same away from solids. This also applies for cross terms in
the viscosity equation. It can happen that some coe�cient leaves
are �lled with the same default value. When this happens, we delete
the coe�cient leaf node. Loading coe�cient SIMD vectors from
null pointers triggers loading default coe�cients for corresponding
terms. On the other hand, loading DOF SIMD vectors from null
pointers returns all zeros.
Once the diagonal grid is trimmed, it no longer re�ects the spa-

tial distribution of the DOF. We use an integer grid to index each
DOF. This index grid is never trimmed to keep the original spatial
distribution of DOF. It is also the mapping from a 3D DOF grid to
an 1D numeric vector.

6 UNIT TEST EXPERIMENTS
To evaluate the performance of our multigrid solver, we �rst conduct
unit test experiments for solving the pressure Poisson equation and
the variational viscosity equation. After the unit tests, we choose the
best set of parameters to simulate various viscous and non-viscous
�uids presented in the next section.
Figure 7 summarizes the unit test scenes. A sparse scene (Fig-

ure 7 (a)) and a compact scene (Figure 7 (b)) are designed for the
pressure Poisson equation. For the variational viscosity equation,
various viscosity coe�cients can be used for the designed viscosity
scene (Figure 7 (c)). In the unit test experiments, the convergence
criterion is set according to a relative error tolerance of 10�7. We
compare various linear system solvers, Diagonal Preconditioned
Conjugate Gradient (DPCG) with Eigen’s implementation [Guen-
nebaud et al. 2010], Incomplete Cholesky Preconditioned Conjugate
Gradient (ICPCG) with Eigen’s implementation, Batty’s implemen-
tation [2018], and Unsmoothed Aggregation Algebraic MultiGrid
(UAAMG) with explicitly built matrix approach and matrix-free
SIMD-VDB approach, and the AMGCL library [Demidov 2019, 2020].
All the numerical experiments have been performed on a single
workstation with 2 ⇥ 12-core Intel® Xeon® E5-2687W v4 CPUs and
256 GB DDR4-2133 memory.

6.1 Pressure Poisson Equation
As shown in Figure 7 (b), a compact scene is used to test the Poisson
solverwhere an open tank is �lledwithwater.We use the normalized
index of DOF (0 to 1) plus a uniform noise from -1 to 0 as the right

hand side. The former introduces long-wavelength and the latter
introduces short-wavelength errors.

Table 2. Performance of the unit tests for the pressure Poisson equation in
the compact scene. The resolution refers to the number of divisions along
each axis. We compare DPCG, ICPCG with Eigen’s implementation and
Ba�y’s implementation [Ba�y 2018], UAAMG with explicitly built matrix
and matrix-free SIMD-VDB approach, and the AMGCL library [Demidov
2019, 2020]. Di�erent smoothers are also compared, where DJ is damped
Jacobi, SRJ is Scheduled Relaxed Jacobi, RBGS is Red-Black Gauss-Seidel
and SPAI-0 is the Sparse Approximate Inverse-0 [Bröker et al. 2001]. The row
with SRJ, NT for UAAMG (SIMD) is the result with No Trimming of default
coe�icients. In each of the box, we report the number of iterations towards
convergence and the corresponding runtime. For algebraic multigrid based
methods, we also report the time required to construct the matrix hierarchy
inside the round parenthesis. The convergence criterion is set to be a relative
error of 10�7 for all methods. The memory usage for UAAMG (SIMD) for
di�erent resolutions is 0.7 GB, 2.1 GB, 11.9 GB, and 84.7 GB respectively.

Resolution 128 256 512 1, 024
# DOFs 2, 146, 685 16, 974, 589 135, 005, 693 1, 076, 890, 621

DPCG 1,323 iters 4,544 iters 9,322 iters -18.6s 584.7s 8,756.4s

ICPCG (Eigen) 782 iters 2,538 iters - -108.9s 6,407.1s

ICPCG (Batty) 195 iters 395 iters 903 iters -7.5s 116.8s 1,943.7s

UAAMG

DJ 11 iters 11 iters 11 iters -691ms (746ms) 6.3s (6.4s) 50.3s (53.2s)

SRJ 9 iters 9 iters 9 iters -569ms (747ms) 5.2s (6.5s) 41.5s (53.7s)

RBGS 7 iters 7 iters 8 iters -595ms (766ms) 5.8s (6.5s) 53.1s (54.6s)

SPAI-0 12 iters 12 iters 13 iters -754ms (732ms) 7.0s (7.0s) 60.3s (54.7s)

UAAMG
(SIMD)

DJ 11 iters 11 iters 11 iters 11 iters
371ms (61ms) 2,161ms (174ms) 14.9s (935ms) 111.6s (6.6s)

SRJ 9 iters 9 iters 9 iters 10 iters
308ms (60ms) 1,789ms (180ms) 12.3s (956ms) 102.9s (6.8s)

SRJ, NT 9 iters 9 iters 9 iters 10 iters
376ms (60ms) 2,534ms (198ms) 18.7s (1,178ms) 162.5s (8.9s)

RBGS 7 iters 7 iters 8 iters 8 iters
332ms (62ms) 1,896ms (173ms) 14.6s (915ms) 108.7s (6.7s)

SPAI-0 12 iters 12 iters 13 iters 13 iters
424ms (58ms) 2,457ms (181ms) 18.2s (918ms) 137.4s (6.7s)

AMGCL
DJ 18 iters 24 iters 26 iters -634ms (702ms) 7.1s (4.8s) 71.3s (40.6s)

SPAI-0 17 iters 23 iters 25 iters -600ms (703ms) 6.9s (5.0s) 64.0s (38.8s)

Table 2 shows the performance report of various linear system
solvers for the Poisson equation in the compact scene (Figure 7 (b)).
Three baseline methods DPCG, ICPCG (Eigen), and ICPCG (Batty)
are tested. ICPCG (Batty) achieves the best performance and is used
as the baseline method for later sparse scene test (Figure 7 (a)). In
5123 resolution, our UAAMG approach (SRJ smoother) with explicit
matrix implementation already achieves 20.4⇥ speedup over ICPCG
(Batty) including the matrix hierarchy construction time. Our SIMD-
VDB approach further achieves a speedup of 7.2⇥ over the explicit
matrix implementation, leading to an overall speedup of 147⇥ over
ICPCG (Batty). Using 1283 and 2563 resolutions, our framework
achieves an overall speedup of 20⇥ and 59⇥ over ICPCG (Batty).
It indicates that our framework has a much better performance
especially in the high resolution cases which are usually needed for
accurate and detailed �uid simulations. Using the resolution of 10243,
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Fig. 5. The memory layout of voxels inside a 8 ⇥ 8 ⇥ 8 leaf node, and illustration of a matrix-vector multiplication based on SIMD operations. Each leaf
node is dynamically allocated and densely populated with voxels in a lexicographical order. The symmetric Laplacian matrix coe�icients are stored in three
o�-diagonal terms indicated by voxels with red (x), green (y), blue (z) faces, and a diagonal term. The matrix-vector multiplication can be applied by multiplying
corresponding matrix coe�icient SIMD vectors with the DOF SIMD vectors and adding them together. The solid and hollow circles in each vector voxel
indicate colors in the red-black Gauss-Seidel update. The number on each voxel is the memory o�set to the first element in the corresponding leaf node. All
SIMD vectors are native-continuous in the memory except the I± SIMD vectors.
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(a) Sparse: # = 10 # = 1000 (b) Compact (c) Viscosity

Fig. 7. Sketch of the unit test scenes for solving the pressure Poisson equa-
tion and the variational viscosity equation. The sizes of all scenes are 1 m3.
In (a), the overall number of DOFs is almost kept as a constant, while the
physical shape is divided into di�erent numbers of balls. For each individual
ball, the boundary is a free surface, which results in a Dirichlet boundary
condition for the pressure Poisson equation. In (b), a tank of liquid is used
to construct the pressure equation. The top side is a free surface (Dirichlet
boundary condition) and other faces are solid walls (Neumann boundary
condition). In (c), a ball of viscous liquid is located on another solid ball.
Please note that the cross section cut is just due to the visualization of
the internal boundary. The free surface part of the liquid ball results in a
Neumann boundary condition for the variational viscosity equation and
the part contacting the solid ball results in a Dirichlet boundary condition.

only UAAMG (SIMD) has su�cient memory to solve the equation.
Please note, that during the implementation, we trim default matrix
coe�cient nodes and replace them with default constant values as

Fig. 8. Impact of sparsity within the fluid geometry on the solver’s e�iciency
in the sparse scene in Figure 7 (a). The top figure presents the runtime with
regard to the number of balls for three methods, ICPCG, UAAMG, and
UAAMG (SIMD). In the bo�om figure, the red line refers to the volume
portion and the black line refers to the number of DOFs per ball. For all
of the above tests, the total number of DOFs stays around 29 million. The
SIMD approach has noticeable overhead for extremely disperse water drops,
while ICPCG e�ectively solves thousands of small subsystems.

mentioned in Section 5.3. The comparison of NT (No Trim) with the
�nal one shows that this technique alone achieves 1.5⇥ speedup.

The compact scene is ideal for SIMD acceleration because almost
all SIMD vectors are �lled with DOFs. However, in the extremely
sparse casewhere each SIMDvector only contain oneDOF, the SIMD
approach only introduces overhead. The sparse scene (Figure 7 (a))
is designed to systematically analyze the performance of SIMD
acceleration as a function of sparsity. The number of balls is the
parameter used to control the physical sparsity of the scene. A larger
number of balls leads to a smaller droplet sizes with �xed total
volumes. Figure 8 (top) shows that the SIMD approach is the fastest
until 105 balls, which has 290 DOFs per ball. Multigrid with explicit
matrix construction is insensitive to the sparsity pattern, while the
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SIMD-VDB approach for the matrix multiplication introduces more
overheads and eventually loses its advantage. Figure 8 (bottom)
shows the volume portion based on the OpenVDB data structure.
It is calculated as the total number of DOFs divided by 8 times the
total number of non-empty SIMD vectors. The SIMD approach is
favored unless in extremely sparse scenes.

6.2 Variational Viscosity Equation

Table 3. Performance of the unit tests for the variational viscosity equation.
The resolution refers to the number of divisions along the radial direction.
We have conducted experiments for two viscosity coe�icients, ` = 1 Pa · s
and ` = 104 Pa · s. Results for five methods, DPCG, ICPCG, UAAMG,
UAAMG (SIMD) UAAMG (SIMD, NT) are presented. The multi-color Gauss-
Seidel smoother is used for UAAMG, UAAMG (SIMD) and UAAMG (SIMD,
NT). UAAMG (SIMD, NT) is designed for testing the performance with No
Trimming of default coe�icients. In each box, we report the number towards
convergence and the corresponding runtime. For algebraic multigrid based
methods, matrix hierarchy construction time are reported in the round
parenthesis. The convergence criterion is set to be a relative error of 10�7
for all the methods. The memory usage for UAAMG (SIMD) of di�erent
resolutions is 1.2 GB, 3.8 GB, 10.1 GB, and 21.8 GB respectively.

Resolution 128 256 384 512
# DOFs 1, 892, 865 14, 627, 457 48, 805, 069 115, 018, 077

` (1 Pa · s)

DPCG 33 iters 65 iters 98 iters 133 iters
540ms 9.1s 43.9s 133.5s

ICPCG
(Batty)

19 iters 108 iters 138 iters 164 iters
1,981ms 52.5s 216.4s 572.5s

UAAMG 6 iters 9 iters 10 iters 11 iters
640ms (1,513ms) 8.2s (11.4s) 32.1s (40.4s) 82.6s (100.8s)

UAAMG
(SIMD)

6 iters 9 iters 10 iters 11 iters
417ms (454ms) 3.3s (1.3s) 10.8s (3.4s) 26.1s (7.4s)

UAAMG
(SIMD, NT)

6 iters 9 iters 10 iters 11 iters
510ms (448ms) 4.8s (1.2s) 16.6s (3.0s) 42.1s (6.6s)

` (104 Pa · s)

DPCG 1,155 iters 2,705 iters 4,706 iters 5,375 iters
18.3s 355.8s 1,798.2s 5,252.2s

ICPCG
(Batty)

484 iters 1,186 iters 2,154 iters -26.7s 495.2s 2,951.3s

UAAMG 23 iters 27 iters 30 iters 32 iters
2.3s (1.8s) 24.1s (11.7s) 94.8s (50.6s) 242.1s (98.9s)

UAAMG
(SIMD)

23 iters 27 iters 30 iters 32 iters
1.6s (451ms) 9.7s (1.3s) 31.8s (3.3s) 74.9s (7.5s)

UAAMG
(SIMD, NT)

23 iters 27 iters 30 iters 32 iters
1.9s (439ms) 13.7s (1.2s) 47.7s (3.0s) 118.5s (6.7)

In Figure 7 (c) we place a spherical drop of viscous liquid on top of
another solid sphere to test the solver for the variational viscosity
Eq. (8). The r.h.s. of Eq. (8) requires the initialization of the velocity
�eld. For each component of the velocity, we introduce three parts:
the random noise with uniform distribution from -0.5 to 0.5, the
relative position (normalized to -0.5 to 0.5) of a voxel in a leaf node,
and the relative position (normalized to -0.5 to 0.5) of a leaf node in
the topology tree. The sum of the above three parts contains both
the long-wave length and the short-wave length error.

In our experiments, we �nd that only the multi-color Gauss-Seidel
smoother provides stable convergence when solving the linear sys-
tem. For the baseline linear system solver, we choose DPCG and
ICPCG (Batty). DPCG is used in Houdini for solving the viscosity
equation on a uniform and adaptive grid [Goldade et al. 2019; Side
E�ects Software 2021] and the ICPCG (Batty) is the best baseline
for the Poisson equation. We observe that DPCG is more e�cient in

Fig. 9. Comparison of runtime (refers to the le� vertical axis) with regard
to di�erent viscosity coe�icients for three methods, DPCG, UAAMG and
UAAMG (SIMD). The red dash do�ed line is the speedup (refers to the right
vertical axis) of UAAMG (SIMD) over DPCG.

solving the viscosity equation. The comparison is done with two dif-
ferent dynamic viscosity coe�cients under di�erent resolutions. As
shown in Table 3, in both low and high viscosity tests, our approach
with SIMD-VDB implementation achieves the best performance. Our
approach achieves more speedup in a higher resolution scene. Using
a 512 resolution, our framework can achieve 4⇥ and 64⇥ speedup
over DPCG for viscosities of ` = 1 Pa · s and ` = 104 Pa · s respec-
tively. Like in case of the pressure Poisson equation, we also report
the performance for NT (No Trim). This technique alone achieves a
speedup of 1.45⇥ and 1.49⇥ for two di�erent viscosities. Moreover,
in the work of Aanjaneya et al. [2019], the geometric multigrid
(119.6 s) for the 3D benchmark (2563) is slower than ICPCG (95.3 s),
but ours is at least 10⇥ faster than ICPCG. Using the same baseline
method, UAAMG is proved to be much more e�cient than GMG in
solving the variational viscosity equation. We also tried AMGCL,
however it fails unless ine�cient serial Gauss-Seidel is used.
With the observation that the performance of solving the vari-

ational viscosity Eq. (8) is dependent on the viscosity coe�cient,
we further analyze this under the resolution of 256 with di�er-
ent dynamic viscosity coe�cients ranging from ` = 0.1 Pa · s to
` = 105 Pa · s. As shown in Figure 9, both UAAMG and DPCG
require longer time when solving a sti�er viscosity equation, but
our approach is much less sensitive to material sti�ness. Please note,
that the numerical sti�ness of Eq. (8) actually depends on `�C

d�G2 . Our
framework is advantageous especially when high resolution, large
time steps, and high viscosity are required.

7 COMPLEX NUMERICAL EXAMPLES
In this section, we compare the performance of our framework with
Houdini’s [Side E�ects Software 2021] �uid solver in which adaptive
pressure solver and state-of-the-art adaptive variational viscosity
solver are implemented. In our framework, we choose the Sched-
uled Jacobian smoother (SRJ) for the pressure Poisson equation and
the multi-color Gauss-Seidel smoother for the variational viscosity
equation. We enable the adaptive solver for the pressure Poisson
equation [Losasso et al. 2004] and adaptive variational viscosity
equation [Goldade et al. 2019] in Houdini’s setting. Same minimum
and maximum FLIP substep number per video frame and same CFL
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Fig. 10. River Fall.Water flowing down the river while hi�ing the riverbed.
The domain size is about 75 m ⇥ 50 m ⇥ 25 m, and the grid resolution is
0.1 m.

number limits are set for both approaches. The numbers of total
substeps are reported to give a fair comparison by calculating per-
substep performance. According to Houdini’s default settings, for
our method we also set the relative error tolerance to be 10�4 for
the pressure Poisson equation and 10�3 for the variational viscosity
equation. The speedup achieved by our framework is presented in
both non-viscous and viscous �uid simulations.

7.1 Non-viscous Fluids
In the simulation of non-viscous �uids, the pressure Poisson Eq. (4) is
solved once in each substep. In Table 4, we report the total pressure
Poisson equation solving time, total simulation time as well as their
per-substep statistics. As mentioned before, we use the per-substep
speedup as the main indicator. In this regard, we achieve up to 4.19⇥
speedup for the pressure Poisson equation and 5.32⇥ speedup for
the total simulation.

7.1.1 River Fall. The river fall scene is designed as a realistic ex-
ample with both compact water �ow and sparse water droplets. As
shown in Figure 10, water is �ushing downstream. Although a lot
of splashes are generated when the �uid hits the rocks, the major-
ity of the water volume still sits on the riverbed. Our framework
e�ciently simulates this scene and achieves an overall speedup of
3.55⇥ over adaptive solvers in Houdini.

7.1.2 Fan Mixer. In this non-viscous fan mixer scene, almost a
billion particles are used for the detailed simulation. As shown
in Figure 11, the rotating turbine blades interact with the liquid.
Di�erent levels of details, long waves and small-scale splashes, are
well captured in our simulation. In Houdini’s adaptive �uid solver,
the simulation crashed after 40 frames due to insu�cient memory.
Using the statistics of this range, we achieves an overall speedup of
2.94⇥.

7.1.3 Meteor. In Figure 12, the dynamics of a meteor hitting into a
tank of water is presented. Detailed large-scale splashes are gener-
ated after the meteor collides with the water surface. In the settling
down process of the meteor, the water waves of di�erent levels
are also captured. Almost a billion particles are used in this scene.

Fig. 11. Fan Mixer. A fan rotating in a tank of water. The turbine blades
interact with the water and generate splashes and waves. The domain size
is about 3 m ⇥ 3 m ⇥ 0.5 m, and the grid resolution is 0.0033 m.

Fig. 12. Meteor. A meteor hi�ing into a tank of water and generating large-
scale splashes. In the se�ing down process of the meteor, water waves
are propagating back and forth inside the tank. The domain size is about
30 m ⇥ 30 m ⇥ 2 m, and the grid resolution is 0.025 m.

In Houdini’s adaptive �uid solver, the simulation crashed after 60
frames due to insu�cient memory. Compared to the octree approach
[Losasso et al. 2004] from Houdini, our framework deals better with
the large-scale splashes, and achieves an overall speedup of 5.32⇥
in the corresponding frame range.

7.2 Viscous Fluids
For the viscous �uids, we further report the variational viscosity
equation solving time as well as its substep statistics besides what we
reported for non-viscous �uids. Depending on the di�erent dynamic
behavior and viscosity coe�cients, we achieve a speedup of 2.11⇥
to 2.91⇥ for the pressure Poisson equation, 1.14⇥ to 18.34⇥ for the
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Table 4. Time breakdown of the non-viscous simulations for our approach (top part in each row) and the adaptive octree approach (bo�om part in each row)
by running Houdini [Side E�ects So�ware 2021]. The corresponding per-substep results are reported in the round parenthesis. Please note that the second
value of per-substep runtime in our approach is calculated using statistics from the same frame range of the corresponding Houdini simulation.

Scene Particles
Count

Frames
Count

Substeps
Count

Pressure
Time

Pressure
Speedup

Total
Time

Total
Speedup

River Fall 165M (�nal) 720 2,836 6,159s (2.15s) 3.17⇥ (3.17⇥) 25,009s (8.74s) 3.55⇥ (3.55⇥)2,865 19,519s (6.81s) 88,900s (31.03s)

Fan Mixer 974M 240 3,599 43,960s (12.21s, 12.81s) N/A (2.21⇥) 215,683s (59.83s, 61.47s) N/A (2.94⇥)40 (crashed) 571 16,197s (28.37s) 103,140s (180.63s)

Meteor 908M 360 3,439 38,334s (11.15s, 13.01s) N/A (4.19⇥) 206,857s (60.15s, 63.98s) N/A (5.32⇥)60 (crashed) 430 23,428s (54.48s) 146,400s (340.47s)

Table 5. Time breakdown of the viscous simulations for our approach (top part in each row) and the adaptive octree approach (bo�om part in each row) by
running Houdini [Side E�ects So�ware 2021]. The corresponding per-substep results are reported in the round parenthesis.

Scene Particles
Count

Frames
Count

Substeps
Count

Pressure
Time

Pressure
Speedup

Viscosity
Time

Viscosity
Speedup

Total
Time

Total
Speedup

SIGGRAPH Bunnies 49M 360 386 1,156s (2.99s) 2.51⇥ (2.48⇥) 3,805s (9.86s) 2.93⇥ (2.90⇥) 6,253s (16.20s) 4.24⇥ (4.20⇥)390 2,899s (7.43s) 11,152s (28.60s) 26,513s (67.98s)

Bunny Cut 93M 480 2,486 7,798s (3.14s) 1.30⇥ (2.33⇥) 28,606s (11.51s) 5.01⇥ (8.98⇥) 48,758s (19.61s) 3.75⇥ (6.73⇥)1,386 10,147s (7.32s) 143,276s (103.37s) 182,878s (131.95s)

Fan Mixer 288M 240 1,663 14,296s (8.60s) 3.64⇥ (2.73⇥) 46,436s (27.92s) 1.52⇥ (1.14⇥) 85,618s (51.48s) 2.66⇥ (2.00⇥)2,214 52,007s (23.49s) 70,444s (31.82s) 228,120s (103.04s)

Meteor 114M 360 1,181 4,268s (3.61s) 8.19⇥ (2.81⇥) 12,459s (10.55s) 4.19⇥ (1.44⇥) 24,411s (20.67s) 7.85⇥ (2.69⇥)3,439 34,970s (10.17s) 52,176s (15.17s) 191,544s (55.70s)
Buckling/Coiling 34M (Final) 600 5,966 3,949s (0.66s) 2.13⇥ (2.13⇥) 15,571s (2.61s) 2.24⇥ (2.23⇥) 26,147s (4.38s) 2.45⇥ (2.45⇥)

` = 50 Pa · s 5,975 8,418s (1.41s) 34,807s (5.83s) 64,080s (10.72s)
Buckling/Coiling 41M (Final) 600 5,940 4,561s (0.77s) 2.12⇥ (2.11⇥) 19,511s (3.28s) 4.38⇥ (4.36⇥) 31,560s (5.31s) 3.75⇥ (3.73⇥)
` = 500 Pa · s 5,975 9,662s (1.62s) 85,522s (14.31s) 118,500s (19.83s)

Buckling/Coiling 39M (Final) 600 5,821 5,310s (0.91s) 2.99⇥ (2.91⇥) 24,031s (4.13s) 18.85⇥ (18.34⇥) 36,920s (6.34s) 15.03⇥ (14.62⇥)
` = 5 000 Pa · s 5,981 15,875s (2.65s) 452,880s (75.72s) 554,760s (92.75s)

Fig. 13. SIGGRAPH Bunnies. Hundreds of viscous bunnies are dropped
at the same time resulting in a SIGGRAPH-le�ering. The dynamic viscosity
coe�icient is ` = 5 000 Pa · s. The height of a single bunny is about 1.15 m
and the grid resolution is 0.02 m.

variational viscosity equation, and 2.00⇥ to 14.62⇥ for the total
simulation using per-substep statistics. Table 5 shows the summary.

7.2.1 SIGGRAPH Bunnies. In Figure 13, hundreds of viscous bun-
nies are released at the same time resulting in a SIGGRAPH -lettering.

In the initialization of FLIP, one voxel on average contains 8 parti-
cles. In this scene, the DOFs count for the pressure Poisson equation
(as well as voxel count) is 7 million and the variational viscosity
equation is 23 million. This is already a challenging scene while
our framework can �nish the simulation in a very short time (less
than 2 hours), achieving 2.48⇥ and 2.90⇥ speedup for the pressure
Poisson equation and variational viscosity equation respectively.
Please note, that the larger overall speedup of 4.20⇥ is achieved by
optimization using the SIMD for particle advection and P2G/G2P
transformation.

7.2.2 Bunny Cut. Our framework can e�ciently simulate the chal-
lenging scene reported in Goldade et al. [2019] in which a highly
viscous bunny interacts with two crossed thin wires. As shown
in Figure 14, the bunny is cut by the wires after being dropped
onto them. It then deforms and coalesces after the cut. This scene
is highly viscous (` = 20 000 Pa · s) and is simulated using a high
resolution. As analyzed in the unit test experiments section, our
framework performs particularly well in such scenarios and achieves
a per-substep speedup of 8.98⇥ for solving the variational viscosity
equation compared to Houdini’s adaptive octree approach [Goldade
et al. 2019].

ACM Trans. Graph., Vol. 41, No. 4, Article 49. Publication date: July 2022.



49:14 • Shao, H. et al.

Fig. 14. Bunny Cut. A highly viscous bunny hi�ing thin wires. The bunny
deforms and coalesces a�er the cut. The dynamic viscosity coe�icient is
` = 20 000 Pa · s. The height of the bunny is about 1.57 m and the grid
resolution is 0.004 m.

Fig. 15. Fan Mixer (Viscous). A fan rotating in a tank of viscous liquid.
Long-length waves are generated along the box. The dynamic viscosity
coe�icient is ` = 2 000 Pa · s. The domain size is about 3 m ⇥ 3 m ⇥ 0.5 m
and the grid resolution is 0.005 m.

7.2.3 Fan Mixer. In Figure 15, the fan mixer’s blades interact with
a viscous liquid. The dynamics is less intense compared to the non-
viscous scene. Most volume of the liquid almost remains static,
thus the solving of the variational viscosity equation is relatively
not challenging for the Houdini adaptive octree approach. Both
approaches perform well. Per-substep speedups of 1.14⇥ and 2.00⇥
are achieved for the variational viscosity equation and the overall
simulation respectively.

7.2.4 Meteor. In the viscous scene of a meteor hitting into a tank
of liquid, the large-scale splashes are not generated in contrast to
the non-viscous scene. As shown in Figure 16, the meteor grooves a
trajectory in the viscous liquid which is then smoothed gradually.

Fig. 16. Meteor (Viscous). A meteor hi�ing into a tank of viscous liquid.
The grooved trajectory by the meteor is gradually smoothed. The dynamic
viscosity coe�icient is ` = 5 000 Pa · s. The domain size is about 30 m ⇥
30 m ⇥ 2 m and the grid resolution is 0.05 m.

` = 50 Pa · s, 500 Pa · s, 5 000 Pa · s ` = 50 Pa · s, 500 Pa · s, 5 000 Pa · s

Fig. 17. Buckling/Coiling.Buckling and coiling e�ects for various viscosity
coe�icients. Mesh (top) and particle views (bo�om) are shown at di�erent
points in time (le� to right). The viscous thread has a radius of 0.005 m and
the grid resolution is 0.0005 m.

Both approaches perform well in solving the variational viscosity
equation and our framework achieves a per-substep speedup of
1.44⇥ for solving this equation and an overall speedup of 2.69⇥.

7.2.5 Buckling/Coiling. Buckling and coiling phenomena are com-
monly observed in our daily life when a jet of viscous liquid hits
onto a ground. Our framework can easily simulate the correspond-
ing dynamics with various viscosity coe�cients as shown in Fig-
ure 17. In the unit test experiments section for the viscosity equation,
we already showcased that our framework is less sensitive to nu-
merical sti�ness. We achieve a larger speedup compared to the
adaptive octree approach. In the most viscous scene, we achieve
a 18.34⇥ speedup for solving the variational viscosity equation.
Furthermore, we observed that Houdini’s adaptive viscosity solver
actually reaches its iteration limit and does not satisfy the con-
vergence criterion of a relative error of 10�3 for ` = 5 000 Pa · s.
Our framework is not only faster but also more stable in such a
challenging scene.
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8 CONCLUSION, LIMITATIONS, AND FUTURE WORK
In this work, we have demonstrated that our Unsmoothed Aggrega-
tion Algebraic MultiGrid (UAAMG) framework can achieve state-
of-the-art performance on the simulation of incompressible �ow.
Compared to the newest version of Houdini 19.0 [Side E�ects Soft-
ware 2021], our framework is about 2.11⇥ to 4.19⇥ faster than the
adaptive pressure solver [Losasso et al. 2005, 2004], 1.14⇥ to 18.34⇥
faster than the adaptive variational viscosity solver [Goldade et al.
2019], and 2.00⇥ to 14.62⇥ faster overall.
The following four key components contribute to our success:

(1) a SIMD accelerated matrix-vector multiplication shortens the
time for each iteration;

(2) amatrix coe�cients trimming strategy improves computation
throughput in the matrix-vector multiplication;

(3) an unsmoothed aggregation multigrid preconditioned con-
jugate gradient method converges in a few iterations over a
wide range of parameters;

(4) a parallel coarsening implementation ensures short construc-
tion time for the di�erent multigrid levels.

While each component substantially improves the performance,
implementing all components requires considerable e�ort. Finally,
we give some practical advice based on the amount of e�ort, and
availability of source codes.
Without SIMD and parallel coarsening (basic implementation),

the naive UAAMG based on Eigen performs comparable to AMGCL
for the Poisson equation and slower than the adaptive pressure
solver in Houdini. For the variational viscosity equation, naive
UAAMG takes about 4⇥ longer, slower than the adaptive method
[Goldade et al. 2019] in Houdini. Therefore we recommend Hou-
dini in general, while AMGCL is the second option for the Poisson
equation. AMGCL fails in solving the variational viscosity equation.
When SIMD, trimming, and matrix-free coarsening are incorpo-

rated (full implementation), our framework is recommended over
all large scale examples, even in the very splashy river fall scene
(see Figure 10) where many SIMD vectors are only sparsely �lled
with few DOFs.

Our Poisson solver is a general solver using a symmetric 7-point
stencil on regular Cartesian grids. It only requires the matrix coe�-
cients on the �nest grid and the spatial pattern of the DOFs. It shows
great potential beyond the pressure projection in �uid simulation.
In theory, our solver can be used for Poisson surface reconstruction
[Kazhdan et al. 2006], and solving the magnetic �eld in an Eulerian
ferro�uid simulation [Ni et al. 2020].
Both of the solvers rely on regular grids, which is not memory

e�cient compared to adaptive grids. The adaptive method of Ando
and Batty [2020] could have a higher speedup than ours, but they
have compromised accuracy. The speedup of SIMD relies on high
volume portions of DOFs inside SIMD vectors resulting in a reduced
acceleration in very splashy scenes. When the number of particles
is small, the overhead is too large. The currently used multi-color
Gauss-Seidel smoother works well in the viscosity solver, but the
iteration number still weakly depends on the viscosity, while Zhu
et al. [2010] showed a smoother which is insensitive to material
parameters. It would be interesting to see if such a smoother can be

incorporated. In the presence of spatially varying viscosity coe�-
cients, there are not much matrix coe�cients to trim o�. Therefore
the performance would be a�ected in such a case.

Moreover, several future improvements could be promising. The
current solver uses 60 GB/s of memory bandwidth in the solving
process, which is almost the peak bandwidth for four channel DDR4-
2133 memory. Moving the whole pipeline to the GPU with large
memory bandwidth should be explored. The current code only runs
on a single workstation, it is conceivable to extend the system to
multiple compute nodes.
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Appendix 1 EXPANDED VARIATIONAL VISCOSITY
EQUATION DISCRETIZATION

In a staggered grid, the cell with index (8, 9,:) occupies the space of
the unit cube

8 � 1
2
, 8 + 1

2

�
⇥

9 � 1

2
, 9 + 1

2

�
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Velocity components in three directions D8, 9,: , E8, 9,: ,F8, 9,: and cor-
responding volume fractions are de�ned at face centers (8 � 1

2 , 9,:),
(8, 9� 1

2 ,:), (8, 9,:� 1
2 ) respectively. Pressure volume fraction+? ;8, 9,:

is de�ned at cell center (8, 9,:). Volume fractions of stress tensor
components+gG~ ;8, 9,: ,+g~I ;8, 9,: ,+gGI ;8, 9,: are de�ned at edge centers
(8 � 1

2 , 9 � 1
2 ,:), (8, 9 � 1

2 ,: � 1
2 ), (8 � 1

2 , 9,: � 1
2 ) respectively.

Figure A1 shows the cross section of the velocity component D’s
stencil at index (8, 9,:) on the plane I = : and ~ = 9 . The six o�-
diagonal terms areD8�1, 9,: ,D8+1, 9,: ,D8, 9�1,: ,D8, 9+1,: ,D8, 9,:�1,D8, 9,:+1.
The eight cross terms are E8, 9,: , E8, 9+1,: , E8�1, 9,: , E8�1, 9+1,: , F8, 9,: ,
F8, 9,:+1,F8�1, 9,: ,F8�1, 9,:+1.

The discretization of variational viscosity equation at D8, 9,: is
given by✓
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Fig. A1. Stencils for the velocity componentD at index (8, 9,:) . There is one
diagonal term, six o�-diagonal terms, and eight cross terms.

Appendix 2 THRESHOLD VOLUME FRACTION
As mentioned in Section 3.2, the l.h.s. matrix of Eq. (8) is singular in
some scenarios. In Figure A2, we show that the singularity is related
to the cross component terms on the free surface.
For stress tensor components, gGG and g~~ centered at the red

circle, we obtain a volume fraction of +? = 0.25. gG~ between veloc-
ity components D0 and D3 also has a volume fraction of +gG~ = 0.25.
All other stress tensor components have a volume fraction + = 0.

Velocity components D0 and D3 have the volume fraction + = 0.25,
and D1, D2, D4, D5 have the volume fraction + = 0. In our implemen-
tation, a threshold volume fraction with + = n is set for all velocity
components. The variational viscosity equation in this scenario is
expanded as

D0 �
`�C

d�G2
(2(D2 � D0) + (D4 � D0) + (D3 � D5)) = Dold0 ,

4nD1 �
`�C

d�G2
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4nD2 �
`�C

d�G2
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D3 �
`�C

d�G2
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4nD4 �
`�C

d�G2
(�(D4 � D0) � (D3 � D5)) = 4nDold4 ,

4nD5 �
`�C

d�G2
((D4 � D0) + (D3 � D5)) = 4nDold5 .

With U = `�C
d�G2 , we obtain the equation

H�!u =
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in which
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.

The last two rows of the matrix H in Eq. (A1) would be linearly de-
pendent for a threshold volume fraction n = 0 leading to singularity.

Appendix 3 CROSS TERMS WITHIN THE VARIATIONAL
VISCOSITY EQUATION

Fetching the DOF SIMD vectors and matrix coe�cients SIMD vec-
tors of o�-diagonal terms in the variational viscosity equation in
the SIMD-VDB approach is addressed in the same way as in the
case of the Poisson equation. Here, we discuss how cross terms are
addressed in the SIMD-VDB approach. It depends on the velocity
component channel and we will discuss them separately. Figures A1,
A3, and A4 present related cross terms for the velocity component
D, E andF respectively.

For the velocity componentD8, 9,: , DOF SIMDvectors E8, 9,: , E8�1, 9,: ,
E8, 9+1,: , E8�1, 9+1,: from the E component and DOF SIMD vectors
F8, 9,: , F8�1, 9,: , F8, 9,:+1, F8�1, 9,:+1 from the F component are re-
lated cross terms as illustrated in Figure A1. The former six DOF
SIMD vectors are continuous in memory since their o�sets are in G
and~ directions.F8, 9,:+1 andF8�1, 9,:+1 require the usage of function
get positive z SIMD vector from Figure 6 since their o�sets are in
I direction. The matrix coe�cients SIMD vectors are continuous in
memory for all eight terms.
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D0 D2

D1

D3

D4

D5

G

~

Fig. A2. Illustration of the designed 2D scenario which results in a singular
matrix of the variational viscosity equation. The liquid is only occupying a
quarter of one voxel as shown in the blue region. The velocity components
from D0 to D5 sketched as orange boxes are unknowns in Eq. (8).
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Fig. A3. Related cross terms for the velocity component E at index (8, 9,:) .
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Fig. A4. Related cross terms for the velocity component F at index (8, 9,:) .

For the velocity component E8, 9,: , the corresponding eight cross
terms are shown in Figure A3. Among the DOF SIMD vectors,
F8, 9�1,:+1 and F8, 9,:+1 require the usage of function get positive

z SIMD vector and the rest DOF SIMD vectors are continuous in
memory. The matrix coe�cients SIMD vectors are continuous in
memory for all eight terms.

For the velocity componentF8, 9,: , the corresponding eight cross
terms are shown in Figure A4. Fetching DOF SIMD vectors D8, 9,:�1,
D8+1, 9,:�1, E8, 9,:�1, E8, 9+1,:�1 and the corresponding matrix coe�-
cients SIMD vectors require the usage of function get negative z
SIMD vector. For the other terms, both DOF SIMD vectors and
matrix coe�cients SIMD vectors are continuous in memory.

Appendix 4 CONVERGENCE PLOT
The convergence plot for the unit test experiments is shown in
Figure A5.

Fig. A5. Convergence plot for the unit test experiments. A comparison
for the pressure Poisson equation between five methods (DPCG, ICPCG
(Ba�y), AMGCL (SPAI-0), UAAMG (SRJ) and UAAMG (SRJ, SIMD)) using
a resolution of 256 is shown at the top. A comparison for the variational
viscosity equation between four methods (DPCG, ICPCG (Ba�y), UAAMG,
UAAMG (SIMD)) using a resolution of 256 is shown at the bo�om. Viscosity
coe�icients ` = 1 Pa · s (bo�om le�) and ` = 104 Pa · s (bo�om right) are
used. The absolute error normalized by the norm of the initial r.h.s. is shown
as relative error.
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