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Fig. 1. Our end-to-end design process for cheap and customizable fluidic lenses. Left to right: Lenses are formed from liquid resin that is injected into a ring
mold and hardened with UV light. A scene is imaged through the lens via differentiable ray tracing, and subsequently reconstructed through a neural network.
Different loss functions are evaluated on the point spread function and finale image and back propagated through the whole pipeline to jointly learn the
network parameters and lens design parameters.

Prototyping and small volume production of custom imaging-grade lenses

is difficult and expensive, especially for more complex aspherical shapes.

Fluidic shaping has recently been proposed as a potential solution: It makes

use of the atomic level smoothness of interfaces between liquids, where the

shape of the interface can be carefully controlled by boundary conditions,

buoyancy control and other physical parameters. If one of the liquids is a

resin, its shape can be “frozen” by curing, thus creating a solid optical ele-

ment. While fluidic shaping is a promising avenue, the shape space generated

by this method is currently only described in the form of partial differential

equations, which are incompatible with existing lens design processes. More-

over, we show that the existing PDEs are inaccurate for larger curvatures. In

this work, we develop a new formulation of the shape space lenses generated

by the fluidic shaping technique. It overcomes the inaccuracies of previous

models, and, through a differentiable implementation, can be integrated into

recent end-to-end optical design pipelines based on differentiable ray tracing.

We extensively evaluate the model and the design pipeline with simulations,

as well as initial physical prototypes.

CCS Concepts: • Computing methodologies→ Computational photog-
raphy.
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1 INTRODUCTION AND RELATED WORK
Prototyping and small-volume production of custom lenses for imag-

ing applications are both time-consuming and costly, as they ne-

cessitate specialized equipment and expertise. Despite the grinding

and polishing of spherical lenses having a long-standing history

and relatively low complexity, the fabrication of aspherical glass

lenses necessitates advanced methods, such as single-point diamond

turning, followed by magneto-rheological polishing [Brinksmeier

et al. 2007; Kumar et al. 2022], which is not readily accessible. Small

plastic lenses like those used in mobile phones can be economically

mass-produced by injection molding [Spina et al. 2012], however

the mold creation again requires methods like single-point diamond

turning.

For this reason, there is a large and growing body of literature

trying to develop more accessible techniques for fast optical pro-

totyping. In graphics, Pereira et al. [2014] first proposed to fabri-

cate fiberoptic bundles with a high-end but off-the-shelf polyjet

3D printer. Since then, 3D printing techniques have been refined

substantially. On the high end, two-photon polymerization print-

ers have been used to print anything from fiber optics [Berglund

et al. 2022] to complete micro-scale lens assemblies [Gissibl et al.

2016]. Unfortunately, this technology is neither fully accessible,
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nor does it scale to optical elements with larger form factors. On

the low end, researchers have considered the use of resin-based

3D printers or selective laser sintering (SLS) for larger (cm-scale)

lenses [Gawedzinski et al. 2017; Berglund et al. 2019; Berglund and

Tkaczyk 2022; Aguirre-Aguirre et al. 2023; Christopher et al. 2023;

Gonzalez-Utrera et al. 2024]. Unfortunately, the resolution of such

additive processes is insufficient to provide optical grade surface

finishes without either manual and laborious polishing, or some

form of molding for transferring the final shape and surface quality

from an existing reference surface. Notably, Akşit et al. [Akşit et al.

2019] have proposed to solve this issue by vacuum-forming a thin

layer of optical resin onto a rough lens blank created by 3D printing,

thus effectively transferring the smoothness of the vacuum forming

sheet onto the lens. However, while improving the surface finish

markedly, vacuum forming sheets are themselves not fabricated to

optical surface quality, and also control of the final surface shape is

limited.

Our work is based on fluidic lens shaping pioneered by Frumkim

and Bercovici [2021] and Elgarisi et al [2021], which forms lens

surfaces through fluid dynamics. Specifically, a UV-curable resin is

immersed in a surrounding liquid, forming an atomically smooth

interface, whose shape can be controlled by the relative density

of the resin and the surrounding liquid, the amount of resin used,

and the lens boundary. After curing, this yields a solid lens with an

optical grade finish.

Unfortunately, the original shape model for fluidic shaping [El-

garisi et al. 2021] contains several approximations that lead to inac-

curacies intolerable for lens design. As a demonstrating example, for

two liquids with the same density (neutral buoyancy), the resulting

interface has a spherical shape, but their model can only express

parabolic surfaces - thus an accurate fit is impossible. Moreover,

because their shape space is only described in the form of a PDE, it

has so far not been possible to integrate fluidic shaping into existing

optical design pipelines due to computational constraints. We over-

come both issues by developing a new shape model that is more

accurate, but limited to circular boundaries that are common in

lens design. We also apply this model in a differentiable ray tracer

that simulates the camera-captured images using the fluidic lens.

These simulated images are then input into an image reconstruction

network, allowing for the joint design of optics and the network

in an end-to-end fashion with gradients back-propagated from the

network output. This approach enables a rapid prototyping method

for computational lens design with outstanding imaging quality.

Finally, we also show preliminary work on the actual fluidic

shaping fabrication process, describing how to control fabrication

parameters, as well as achieve independent surface geometries on

both sides of the lens.

In summary, our contributions are: (1) we introduce a new, more

accurate shape model for fluidic shaping that is amenable to lens

design tasks and analyse it in detail; (2) we prove some of its mathe-

matical properties that are important for practical applications; (3)

we introduce a new efficient numerical representation of lens sur-

faces to a differentiable ray tracing pipeline and use it for end-to-end

design; (4) we demonstrate simulation results and initial prototype

fabricated lenses and their optical performance. While more work

remains on automating the fabrication process and controlling the

fabrication conditions to improve repeatability, we believe our work

is a major step forward in establishing fluidic shaping as a viable op-

tion for rapid and inexpensive prototyping of optical components.

2 OVERVIEW
Our lenses are built from liquid, optically clear resin that can be

hardened through UV light curing, once it assumes the desired

shape. Shown in Fig. 1, the resin is injected into a ring shape (with

customized height and diameter), that is closed at the bottom and

resides inside a small tank filled with an immersion liquid. The

immersion liquid is a mixture of water and glycerol, where the

ratio is engineered to give the mixture a precise density. The lens

resin inside the ring forms a single, compact shape, whose surface

is defined by the interplay of two counteracting physical forces:

interfacial tension between the UV resin and the immersion liquid

and the buoyancy imbalance caused by their density difference. The

shape of this lens depends on 1) the ring geometry, 2) the amount

of injected volume, and 3) the density difference. By adjusting these

quantities, different lens shapes are realized.

In this fabrication process, the lens surface will be perfectly

smooth (much beyond the scale of the optical wavelength [Elgarisi

et al. 2021]), without requiring any post processing such as polishing.

This is an important advantage of fluidic lens fabrication.

We find optimal values for the 3 parameters for a specified imag-

ing task through an end-to-end optimization pipeline. Our system

consists of 3 main components, closer described in the following

sections: 1) an accurate, physically-based model for the equilib-

rium state of fluidic lenses, 2) an analytical end-to-end optimization

pipeline for optical lens systems that support non-analytical lens

models and reconstruction networks, and 3) the manufacturing

process to implement the designed lenses.

A part of the optimization pipeline is the reconstruction network,

as shown in Fig. 1. It is distinct from an image post-processing

network in that it is trained jointly during the lens parameter opti-

mization stage. The goal of the lens optimization is then no longer

to produce the sharpest possible image on the camera sensor but to

produce the image fromwhich the maximum amount of information

about the scene can be decoded by the network. This enables higher

image quality than simply training and applying the network as a

post processing step.

While this general approach allows for a wide area of applica-

tions, we showcase it here by recreating optimized versions of three

different classical lens systems with increasing complexity (single

plano-convex lens, single biconvex lens, triplet lens). Single lens

systems suffer from artifacts such as chromatic aberration and poor

off-axis performance and by optimizing the lens shape, we reduce

these.

While this type of fluidic lens fabrication has been demonstrated

before, the applied physical model still had some limitations, and

no imaging tasks were demonstrated [Elgarisi et al. 2021]. Here,

we build upon and improve the mathematical model to reach the

accuracy required for imaging. While the implementation of the

lens manufacturing itself comes with its own set of problems, we

show initial imaging results and outline future research directions

on the practical side.
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3 FLUIDIC LENS FORMATION MODEL
At the heart of the optimization is the mapping between the design

parameters and the resulting lens shapes. While this is in principle

described by classical fluid dynamics, we are only interested in

the equilibrium state that the system converges towards after the

injection. The ring has a radius of 𝑅0 and a height of ℎ0. At its center,

the lens has a thickness of ℎ𝑐 . The immersion liquid has a density of

𝜌𝑖𝑚 , the resin has a density of 𝜌𝑟 , and the effective density difference

is Δ𝜌 := 𝜌𝑖𝑚 − 𝜌𝑟 . The radial symmetric lens surface is generated

through revoluting a generatrix function ℎ(𝑟 ), 𝑟 ∈ [0, 𝑅0] around
the height axis. The total resin volume injected is 𝑉 . An overview

table of all physical units is given in the supplemental material.

3.1 Surface from System Energy
Following Elgarisi et al. [2021], the energy of the above described

system is given by

Π = ΠS + ΠG + ΠC , (1)

where ΠS denotes the surface energy, ΠG denotes the energy from

the buoyancy imbalance, and ΠC is a Lagrange multiplier for the

volume constraint.

3.1.1 Surface energy. The energy ΠS is a measurement of the en-

ergy required to break the intermolecular bonds when the surface

between the liquids changes. It can be obtained by integrating the

(relative) surface energy𝛾 (defined as work per area) over the surface

𝑆 in polar coordinates, where ℎ𝑟 is the first derivative of ℎ(𝑟 ):

ΠS =

∬
𝑆

𝛾

√︃
1 + ℎ2𝑟 𝑟 d𝑟 d𝜃 . (2)

3.1.2 Buoyancy energy. The gravitational pull acting on the optical

resin is a function of the Earth’s gravity 𝑔 and the mass of the resin,

scaling with its density. The surrounding liquid exerts an upward

force equal to the weight of the liquid displaced. Depending on the

density difference Δ𝜌 , this resultant force will either cause the resin
to rise or remain at the bottom of the container. Neutral buoyancy

can be achieved by matching the density of the surrounding liquid

with that of the optical resin. The volume 𝑉 is a function of ℎ(𝑟 ),
where 𝑉 (ℎ) =

∬
𝑆
ℎ𝑟 d𝑟 d𝜃 . Therefore, we have:

ΠG =

∫
Δ𝜌𝑔𝑉 (ℎ)dℎ =

∬
𝑆

1

2

Δ𝜌𝑔ℎ2 𝑟 d𝑟 d𝜃 . (3)

3.1.3 Free system energy. Substitution of Eq. (2) and Eq. (3) into

Eq. (1), we obtain the free energy of the system

Π =

∬
𝑆

©«𝛾
√︄
1 +

(
dℎ

d𝑟

)
2

+ 1

2

Δ𝜌𝑔ℎ2 + 𝜆ℎ
ª®¬ 𝑟 d𝑟 d𝜃 , (4)

under a fixed volume constraint

ΠC = 𝜆

∬
𝑆

ℎ𝑟 d𝑟 d𝜃 , (5)

which is enforced with a Lagrange multiplier 𝜆. We denote the

integrand of Eq. (4) with

𝐹 (𝑟 ) = (𝛾
√︃
1 + ℎ2𝑟 +

1

2

Δ𝜌𝑔ℎ2 + 𝜆ℎ)𝑟 (6)

to formulate the Euler-Lagrange equation
𝜕𝐹
𝜕ℎ

= d

d𝑟
𝜕𝐹
𝜕ℎ𝑟

, by which

we can obtain a second-order ordinary differential equation (ODE)

of our system:

𝜆𝑟 + Δ𝜌𝑔ℎ𝑟 =
𝛾 (1 + ℎ2𝑟 ) (ℎ𝑟 + 𝑟ℎ𝑟𝑟 ) − 𝛾𝑟ℎ𝑟𝑟ℎ

2

𝑟

(1 + ℎ2𝑟 )
3

2

, (7)

where ℎ𝑟𝑟 represents the second-order derivative.

3.2 Solving the Surface ODE
Solving the ODE in Eq. (7) will give us the generatrix ℎ(𝑟 ) of the
fluidic-freeform surface. We introduce two parameters:{

𝜌∗ = Δ𝜌𝑔
𝛾 ,

𝑝∗ = 𝜆
𝛾 .

(8)

Since the lens surface should be continuously differentiable, we

have ℎ𝑟 (0) = 0 and, from the assumption that the resin volume is

sufficient to touch the ring edge, but not too large to overflow, we

have ℎ(𝑅0) = ℎ0.
ℎ𝑟𝑟 = (𝜌∗ · ℎ + 𝑝∗) (1 + ℎ2𝑟 )

3

2 − ℎ𝑟 (1+ℎ2

𝑟 )
𝑟 ,

ℎ(𝑅0) = ℎ0 ,

ℎ𝑟 (0) = 0 .

(9)

3.2.1 General solution. In Eq. (9), the initial values for ℎ and ℎ𝑟 are

given for two different positions, which does not match the struc-

ture required for standard numerical solvers. We show, however,

that the solution for Eq. (9) is shift-invariant, i.e., the shape of the
surface does not depend on the value of ℎ𝑐 if the injected volume is

adjusted appropriately. Please, see the supplementary material for

the derivation of the shift-invariance.

Thus, we formulate the shifted problem ℎ∗ with the initial values

ℎ∗ (0) = 0 and ℎ∗𝑟 (0) = 0, that we can solve using any numerical

solver:

ℎ∗ (𝜌∗, 𝑝∗ | 𝑟 ) = solver(𝜌∗, 𝑝∗) . (10)

The solution for ℎ(𝑟 ) is then obtained through ℎ(𝑟 ) = ℎ∗ (𝑟 ) + ℎ𝑐 .
To enable fluidic lens design in an end-to-end fashion, it’s crucial

to know the derivatives of ℎ with respect to the design parame-

ters 𝜌∗, 𝑝∗, and ℎ𝑐 . To address this challenge, we utilize a differen-

tiable numerical solver from torchdiffeq [Chen 2018], which is a

PyTorch library of ODE solvers. We use the default solver dopri5,
Dormand–Prince 5(4) [Dormand and Prince 1980], which is an em-

bedded Runge-Kutta numerical method with adaptive step size con-

trol and uses the adjoint sensitivity method to compute gradients

for memory efficiency. This method solves an additional ODE in a

reverse direction to compute the gradients, which avoids storing

intermediate states and thus keeps memory usage low.

3.2.2 Close form solution when 𝜌∗ = 0. For neutral buoyancy (i.e.

when Δ𝜌 = 0, leading to 𝜌∗ = 0), ODE in Eq. (9) has an analytical

solution in the shape of a spherical surface. We find that

ℎ(𝑟 ) =
𝑝∗

2
𝑟2

1 +
√︃
1 − ( 𝑝

∗

2
𝑟 )2

. (11)
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Fig. 2. Comparison of geometrical fittings of aspherical lens 𝐴𝐿2550.
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Fig. 3. Parameter space exploration of Eq. 10. The stable parameter region
is highlighted in blue, parameters outside this region don’t have a solution
on the whole cross section. Values are shown for 𝑅0 = 25𝑚𝑚, but results
generalize through scale-invariance. ODE solutions corresponding to se-
lected parameters from the left are shown on the right. The dashed lines
correspond to negated 𝜌∗ values and form convex lenses, while positive 𝜌∗

values form concave lenses.

3.3 Parameter Space Analysis
With the above formulation, we introduced a new design space for

lenses, that we now analyze in more detail. Overall, there are three

independent parameters: 𝜌∗ related to the density difference, 𝑝∗

related to the injected volume; and ℎ𝑐 , the center thickness that

directly relates to the ring height through ℎ𝑐 = ℎ0 − ℎ∗ (𝑅0). Due
to the above mentioned shift-invariance, we mostly give general

results for ℎ∗ (𝑟 ) and refer to the shift ℎ𝑐 only when needed.

3.3.1 Improved accuracy. In Elgarisi et al. [Elgarisi et al. 2021] the

assumption, that the maximal height difference on the lens surface

is significantly smaller than the lens radius, is used to derive an

efficient, analytical solution of the system of ODE. However, this

constrains the permitted parameters significantly and limits possible

lens design. If the assumption is not fulfilled, lenses can still be

designed, but the mismatch between model and reality then hinders

optical performance. To illustrate, for neutral buoyancy (Δ𝜌 = 0),

(II)

(III)

(IV)

(V) 

(I)

 (I)  Area: 21.6967
(II) Area: 21.6967

(III) Area: 86.7867
 (V)  Area: 86.7869

(I):
(II):

(V): 
(IV):

Fig. 4. Scale-invariance and impact of the density relationships on the lens
shape. 4 shapes with specified parameters are shown. 1) Flipping the sign
of 𝜌∗ while keeping the volume constant (through adjusting 𝑝∗), changes
the lens shape ((I) & (II)). 2) Geometric scaling of shape (II) yields shape (III).
Attempting to achieve the scaled shape by increasing the injected volume
yields (V) as the best fit. Only when the density of the immersion liquid is
changed as well (changing 𝜌∗), the scaled shape can be fit perfectly, (IV).
The scaled lens parameters are computed according to Eq. 16.

the model of Elgarisi et al. computes a parabolic lens shape when

the correct solution is a spherical one, as shown above.

We have already seen, that our model produces spherical shapes

when expected. For non-neutral buoyancy, solving the ODE through

numerical solvers allows for arbitrary precision without relying on

constraining assumptions, as shown in Fig. 2.

3.3.2 Fitting common lens designs. Different design spaces (i.e. pa-

rameterized formulas that describe lens surface) are used in lens

design pipelines (e.g. ZEMAX/ CODEV). For example, the generatrix

of the spherical surface is designed in the form of

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 (𝑟 ) = 𝑐𝑟2

1 +
√︁
1 − (𝑐𝑟 )2

, (12)

where 𝑐 is the curvature. Aspherical surfaces are described by

𝐴𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 (𝑟 ) = 𝑐𝑟2

1 +
√︁
1 − (1 + 𝜅) (𝑐𝑟 )2

+ 𝛼4𝑟
4 + 𝛼6𝑟

6 + ... , (13)

where 𝜅 is the conic constant, and 𝛼𝑖 denote coefficients of polyno-

mials.

Through our surface formation model, we introduced a novel

design space with the surface parameters 𝑝∗, 𝜌∗, and the lens thick-

ness ℎ𝑐 . Rather than being expressed through an analytical formula,

ℎ(𝑟 ) is obtained by solving a differential equation obtained from a

physical model.

We have already shown, that spherical lenses are a subset of our

design space.We now show that classic aspherical lenses (Eq. 13) can

be very well approximated in the fluidic design space. Fig. 2 shows

geometric fits of the Thorlabs AL2550 aspherical plano-convex lens

surface (described by 5 parameters in Eq. (13); 𝑐 , 𝜅, 𝛼4, 𝛼6 and 𝛼8)

by our method and Elgarisi et al.. We find that, in contrast to pre-

vious work, our method closely resembles the given shape. Note,

however, that our design space has only 3 dimensions, thus not

all possible shapes from Eq. (13) can fit equally well in theory. In
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the supplemental material, we show, that all common lens designs

tested have very close fits in our design space. Note, however, that

the motivation of our work lies in the creation of new, end-to-end

optimized, lens designs, thus fitting existing lens designs is consid-

ered a niche application of our work here. Additional fits are found

in the supplemental material.

3.3.3 Symmetry in volume parameter. ℎ∗ (𝑟 ) is symmetric with re-

spect to the volume parameter 𝑝∗, meaning that

ℎ∗ (𝜌∗, 𝑝∗ | 𝑟 ) = −ℎ∗ (𝜌∗,−𝑝∗ | 𝑟 ) . (14)

It immediately follows, thatℎ∗ = 0 for 𝑝∗ = 0. Otherwise, the surface

is convex for 𝑝∗ < 0 and concave for 𝑝∗ > 0. Examples of resulting

curves and their symmetries, are shown in Fig. 3. Note, that 𝑝∗ is in
an abstract unit, rather than in a volume unit, as it depends on the

Lagrange multiplier 𝜆. Intuitively, it describes the deviation from

the volume that gives a minimal surface area for any ring size.

3.3.4 Impact of buoyancy imbalance. 𝜌∗ is proportional densities
difference Δ𝜌 . In previous work, only the absolute value of the

force was considered, which does not allow the distinction between

𝜌𝑖𝑚 > 𝜌𝑟 and 𝜌𝑖𝑚 < 𝜌𝑟 and limits possible designs [Elgarisi et al.

2021], since both cases lead to different shapes.

To illustrate this, several resulting lens shapes are plotted in Fig. 4.

There, different shapes with equal lens volume and flipped signs

of 𝜌∗ are shown, where 𝑝∗ is adjusted to fulfill the previous two

constraints accordingly. We find that an upward facing net force

leads to taller and slimmer shapes, while a downward facing force

leads to flatter lens surfaces.

3.3.5 Valid parameter ranges. During the flow of the resin, its sur-

face tension has to be strong enough to keep all the resin in a

compact shape. Since we model the equilibrium state of the surface,

it is expected that for values beyond these limits, no solutions exist

in our model.

We perform numerical experiments to explore these stability

conditions. For a fixed ring size (with 𝑅0 = 25 mm and ℎ0 undefined

since we only analyze ℎ∗), we find all possible combinations of 𝑝∗

and 𝜌∗ (through brute-force sampling and checking for the existence

of a solution), shown in Fig. 3. We find, that negative values of 𝜌∗

(for which the net force faces downward) allow for significantly

larger injected volumes. While these results appear specific for the

initial ring size, the next section generalizes these results through

scale remapping.

3.3.6 Scale dependency. Since surface tension scales with surface

area while buoyancy scales with volume, the solution for Eq. (9) is

scale-dependent. I.e., for a scaling factor 𝑠 and unadjusted 𝑝∗, 𝜌∗ we
have 

𝑅
′
0
= 𝑠 · 𝑅0 ,

ℎ
′
0
= 𝑠 · ℎ0 ,

ℎ
′ (𝑟 ) ≠ 𝑠 · ℎ( 𝑟𝑠 ) .

(15)

However, we find that there exists a way to adjust 𝑝∗, 𝜌∗ to perfectly
compensate for the change in scale:{

𝜌∗𝑠 =
𝜌∗

𝑠2
,

𝑝∗𝑠 =
𝑝∗

𝑠 .
(16)

and with this

𝑠 · ℎ
(
𝜌∗, 𝑝∗ | 𝑟

𝑠

)
= ℎ′

(
𝜌∗𝑠 , 𝑝

∗
𝑠 |

𝑟

𝑠

)
. (17)

In practice, this means, that in order to create a larger or smaller lens

with the same shape, it is not sufficient to merely adjust the injected

volume, but also the water/glycerol mixture must be adjusted to

compensate for the different scaling between surface tension and

buoyancy, see Fig. 4.

4 END-TO-END LENS OPTIMIZATION WITH
DIFFERENTIABLE RAY TRACING

We integrate the differentiable physical lens formation model into

an open-source differentiable ray tracer DeepLens [Wang et al. 2022;

Yang et al. 2024] for end-to-end lens optimization, see Fig. 1.

4.1 Differentiable Ray Tracing
Ray tracing through an optical lens [Glassner 1989; Lee et al. 2010;

Chen et al. 2021] can be utilized to calculate the point spread func-

tion (PSF) and for ray tracing-based rendering, both of which are

effective in simulating the images captured by an optical lens. In

recent advancements, this process has been developed in a differen-

tiable manner, employing simulated images as objectives to optimize

optical lenses [Sun et al. 2021;Wang et al. 2022; Côté et al. 2023; Yang

et al. 2024]. The DeepLens ray tracer is capable of computing the

intersection of optical rays with lens surfaces and the refraction of

rays in a plug-and-play fashion, given the surface function ℎ and its

first-order derivative ℎ𝑟 . Optical rays emanating from single object

points reach the sensor plane, and PSFs are calculated, which are

subsequently used in image simulation. Operating on the PyTorch

auto-diff framework, DeepLens is entirely differentiable, enabling

gradient back-propagation from the final image output to optimize

lens parameters. For further details on the pipeline, we refer to the

aforementioned references.

4.2 Efficient Numerical Surfaces
During ray tracing, most of the computational time and power

is dedicated to calculating interactions with lens surfaces, which

involves multiple iterations of Newton’s method. Consequently,

the parameters ℎ and ℎ𝑟 are frequently evaluated at various points.

Traditionally, each evaluation requires a repeated ODE computation

due to unknown intersection points, which is excessively costly in

terms of both time and memory.

To address this challenge, we propose an efficient numerical so-

lution to replace the naive per-ray calculation. After updating each

lens parameter and prior to ray tracing, the function ℎ is sampled

once and stored in a table. Furthermore, solving the differential

equation to compute ℎ allows us to obtain and store function val-

ues of ℎ𝑟 at no extra cost. The nearest neighbour lookup proves

inadequate, as the gradient may vanish entirely for nearby sample

positions. Therefore, a differentiable interpolation step is necessary

to approximate intermediate function values continuously. Our re-

search indicates that typically, 1k samples of ℎ and ℎ𝑟 along with

linear interpolation suffice, given the inherent smoothness of lens

surfaces. By adjusting the table size, the desired accuracy can be

attained.
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In a typical end-to-end optimization step, 100k rays are sampled,

but the ODE is only evaluated once, in steps that modify the lens

parameters. And since the lookup tables are small, there is virtually

no memory or computation time impact, when using numerical

surface descriptions. Contrary, this approach might even be used to

speed up the evaluation of complex analytical surface descriptions.

While the exact values vary between use cases and chosen resolu-

tions, this method roughly realizes a speed-up factor of 500 in our

case.

4.3 Lens Optimization
To maintain consistency between simulation and real-world exper-

iments, a flat image is positioned at a set distance in front of the

lens system to represent the actual scene. Image reconstruction is

carried out using a lightweight U-Net [Ronneberger et al. 2015]

shaped network, NAFNet [Chen et al. 2022], which is co-designed

with the fluidic lens in an end-to-end optimization process. Three

wavelengths (656 nm, 589 nm, 486 nm) are utilized to simulate RGB

images and characterize the optical aberrations inherent in the lens

design. During the end-to-end optimization, we first simulate the

camera-captured images, followed by feeding them into the recon-

struction network. In the backward pass, the loss function can be

back-propagated through the network and the fluidic lens for joint

design.

4.4 Loss Function
The loss function

L
Total

= LPSF + LImage (18)

strives to improve both the optical performance of the lens and

the final image quality simultaneously. The image loss determines

the optimal combination of the lens and reconstruction network

for enhancing image quality, while an additional PSF loss adjusts

the lens to minimize the spot size of the ray distribution across all

wavelengths, as shown in Fig. 1.

Specifically, the image loss itself consists of three components:

LImage = LMSE + L
perceptual

+ LSSIM , (19)

where LMSE represents Mean Squared Error, L
perceptual

denotes

perceptual loss, and LSSIM signifies Structural Similarity Index Mea-

sure (SSIM) loss. All the loss terms are weighted by hyperparameters.

For training, the lens parameters are initialized with parameters

from a numerical fit to the geometrical shape of the comparison

lenses. Then, for the first part, only the network is trained, until

the results stabilize. After this, lens optimization is enabled and the

network and lens are trained jointly until the end.

5 FLUIDIC LENS MANUFACTURING
We test our lens design by manufacturing some prototypes and

evaluating their performance. A more detailed discussion about

manufacturing difficulties and ways to overcome them is found in

the discussion section.

5.1 Physical Parameters and Materials
In the lens design space, we optimize for 𝜌∗ and 𝑝∗ (Eq. 8), and ℎ𝑐 .
From these, we compute the fabrication parameters Δ𝜌 , 𝑉0, and ℎ0,

Fig. 5. Manufacturing overview. (a) UV resin injection, (b) curing process, (c)
finished lens after curing, and (d) fluidic lens (left) qualitative comparison
with a benchmark off the shelf lens (right).

the density difference, liquid lens volume, and ring height, respec-

tively.

The relative density Δ𝜌 is calculated assuming a constant value

for the interfacial tension 𝛾 . This value is in fact an average over

time since the molecular diffusion processes prevent it from having

a fixed constant. However, according to our experimental measure-

ments, as discussed later, this is still a suitable approximation.

From Δ𝜌 the mixing ratio of deionized water and glycerol is de-

termined. According to [Takamura et al. 2012], the resulting density

of the mixture follows a linear relationship. In practice, we can ac-

curately match the required mixing ratio by iteratively measuring

the density using a density meter and adding water or glycerol ac-

cordingly. Following this process, we can retrieve a density error of

less than 0.05 %.

We also need to compute the injection volume of the resin. This

is not directly possible from 𝑝∗, since it is not given in physical

units. However, knowing ℎ(𝑟 ), numerical integration can be used

to determine the lens volume with arbitrary precision.

For our prototypes, we used the UV resin brand Vida Rosa which

has already been reported in the fluidic lenses fabrication literature

[Elgarisi et al. 2021]. We experimentally determined its refractive

index for the visible spectrum by using spectroscopic ellipsometry.

This optical model is required for the ray-tracing simulation.We also

measured its liquid density and characterized the average shrinkage

caused by the curing process to reduce potential fabrication errors.

5.2 Manufacturing Steps
Refer to Fig. 5 for a summary of the key fabrication steps and a

visual comparison of the optical performance between one of our

produced lenses and a commercially available lens. While the ring

diameter is chosen a-priori, the ring height ℎ0 is an optimization

parameter and will differ between lenses. We use a parametric 3D

model to print the ring shape. A photograph of one of such rings can

be seen in Fig. 5. The actual ring fabrication is challenging, since we

require precision in the micro-meter scale, beyond what is visible

to the naked eye. We use a stereolithography (SLA) Formlabs Form

3L 3D printer with standard resin that has an XY resolution of 25

microns and layer thickness of 50 microns.
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Fig. 6. Our Imaging Setup: (a) The scene being imaged, and (b) the front
(top) and side (bottom) views of the camera setup, including the custom-
manufactured fluidic lens.

Before starting the fabrication, the immersion liquid and the UV

resin are placed inside a vacuum chamber for 10 minutes. The 3D

printed ring is attached to a polycarbonate sheet that will form a

flat face for our optical component. The base ring is placed inside

the immersion liquid and carefully leveled using a high resolution

bubble level.

For the resin injection, we use a high-end threaded plunger sy-

ringe brand Hamilton, which releases 13.23 𝜇l per turn. For the

resin injection, we use a high-end threaded plunger syringe brand

Hamilton that releases 13.23 𝜇l per turn, which determines our vol-

ume resolution. For our 20 mm in diameter lenses, we use around

80-120 syringe turns. The syringe is positioned vertically in the

central zone of the ring, and the resin deposition begins at a slow

enough rate to prevent the entrapment of immersion liquid bubbles.

Subsequently, the resin volume spreads out and uniformly fills the

ring. For upward facing buoyancy forces, special care must be taken,

to keep the resin volume inside the ring. Surface wettability plays a

crucial role here. While not experimentally characterized in our ex-

ploration, UV resin demonstrates better spreading on polycarbonate

surfaces compared to glass.

For the photo-curing process, we utilize a 32WUV lamp at 405 nm

and apply an energy dose of 2500 mJ/cm
2
at 1.1 mW/cm

2
, resulting

in an exposure time of approximately 38 minutes. Once the curing

is finished, the lens and its base are taken out from the immersion

liquid, followed by removal from the polycarbonate flat base and

drying.

Lenseswith two curved surfaces require two passes of this process.

Two separate rings are fabricated, where the flat side of the first lens

surface acts as bottom for the second ring. The liquid resin of the

second surface attaches tightly to the already cured first surface and

the final lens has no visible seam. We note, however, that precise

leveling for the second half becomes more challenging and failure

to do so results in asymmetric lens shapes.

6 COMPUTATIONAL IMAGING WITH END-TO-END
FLUIDIC LENS DESIGN

To showcase the efficacy of the proposed method, we design and

fabricate fluidic lenses for computational imaging in an end-to-end

manner, and then compare them with off-the-shelf optical lenses

in terms of imaging quality. Specifically, several lens prototypes

are demonstrated: (1) AL2550: plano-convex lens with one aspher-

ical and one flat surface, (2) Best form: bi-convex lens with two

spherical surfaces, and (3) Cooke: spherical triplet, consisting of

a bi-concave lens between two bi-convex lenses (for a total of 6

optimized surfaces).

Note, that due to differences in the optical properties, it is insuf-

ficient to merely optimize for the same shape, we rather have to

use end-to-end optimization to recreate or outperform the imaging

capabilities.

6.1 Experimental Settings and Setup
The end-to-end optical design of the fluidic lens and an image recon-

struction network use the DIV2K dataset consisting of 800 training

images [Agustsson and Timofte 2017]. Data augmentation is used

during optimization to improve the overall performance of both the

optics and the network.

For real-world experiments, a virtual scene is set up with flat

images positioned 1 m away from the first lens surface and various

3D objects included, as shown in Fig. 6.We use a camera Lucid Triton

5.4 MP, with an 4.5 mm aperture diameter, and the lens placed in

the middle. A lens hood is added to prevent indirect reflections. All

elements are fixed on tracks to ensure alignment and enable lens

refocusing.

6.2 Results on Simulated Lenses
Our imaging results are shown in Fig. 7 (top). As the stock plano-

convex lens already produces a comparatively sharp image on the

sensor, our optimized fluidic lens shows a very similar performance.

This carries over to the reconstruction results by the network, which

are again very comparable.

For the bi-convex and triplet, the differences are clearer. In both

cases, the optimized lens produces a sharper image on the sensor.

We note however, that these are end-to-end optimizations, where a

sharp sensor image is not the ultimate goal, but rather the overall

reconstruction is optimized. Consequently, the performance gap is

larger on the reconstructed images. These results show, that even

on simple imaging systems with few adjustable surfaces, end-to-end

optimization can improve results over these stock lenses.

The training time for all examples is around 24 hours. The plano-

convex and bi-convex lenses were optimized on a single V100 GPU,

while the triplet lens is computationally more demanding due to 6

surfaces being jointly optimized and runs on 2 A100 GPUs.

The scores on the right are averages over the whole images and

over many test images of our dataset and show, that the general

image quality improves.

6.3 Real Results
After lens fabrication, the reconstruction network should be fine-

tuned to learn sensor characteristics such as noise and adjust to

potential fabrication inaccuracies. This can help to mitigate artifacts,

but more importantly, the network performance will likely be poor

on unexpected input data. For real scenes, ground truth images are

harder to obtain. We place a tablet in the scene to cover the whole

field of view of the lens and display training images on it. These

ground truth images must be carefully aligned with the sensor image
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Fig. 7. Imaging results of our lens designs. (Top) Optical performance of simulated lenses. 3 types of setups are compared, where Stock refers to bought
reference lenses, and Fluidic refers to our optimized lenses. Results on the sensor and after the reconstruction are shown. Images are compared against the
ground truth image in the virtual scene by peak signal to noise ratio and structural similarity metric, for both, higher values are better. Scores are averaged over
the whole dataset, exact values are found in the supplementary material. (Bottom) Optical performance of fabricated lenses. For these preliminary prototypes,
an aperture with F-number 10 was used to enhance sharpness and show case the effect of the reconstruction network better.
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and potentially color corrected. The fine-tuning requires around 6

additional hours for good training results.

Our measurements are shown in Fig. 7 (bottom). Our findings

indicate that there is room for improvement in the performance

of our lenses compared to the expectations set by the previous

simulations. A detailed discussion of likely reasons is found in the

discussion section.

To increase image quality, we add an aperture (F-number 11)

behind the lens. This filters out rays passing through the edge of the

lens, where the surface shape is most affected by ring inaccuracies.

The image quality is improved by the fine-tuned reconstruction

network, however, also the bi-convex lens does not outperform the

stock lens.

The comparison images show the stock lenses with and without

the aperture. While with a small aperture, the stock lenses are

capable of producing sharp images that do not necessarily require

network post-processing, these single lens systems show significant

problems without the aperture.

In the future, we hope to improve fabrication quality through

enhanced engineering. Designing lens systems means dealing with

compromises. Our simulated results show for example, how off-axis

performance can be improved when the focus on on/axis perfor-

mance is reduced. Such kind of trade-offs mean, that it is not always

necessary to have an overall better all-around performance to out-

perform in specialized usage scenarios. Then, our lens optimization

would have the potential to improve over the stock lenses, as shown

in the simulated results.

7 FUTURE WORK AND CONCLUSION
In this work, we have introduced a new shape model for fluidic

shaped lenses, which is more accurate than earlier models, and for

the first time includes spherical surfaces, which are the expected

shape for neutral buoyancy conditions, since in this case surface

tension is the only force. We have also shown that, through a dif-

ferentiable implementation, this new shape model can be directly

integrated into end-to-end optical design pipelines, and we have

evaluated this approach through extensive simulations. For now, a

discrepancy remains between the performance of the simulated and

fabricated lenses for which we identify some fabrication difficulties

that likely have the biggest impact on quality.
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