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S1 GALERKIN BEM
This section serves as an introduction to the Galerkin boundary
element method. We refer, e.g., to Rjasanow and Steinbach [2007]
for a more rigorous introduction. We consider the boundary value
problem of the Laplace equation.

∇2u(x) = 0, x ∈ Ω ∈ R3 . (S1)

The boundary element method relies on the representation formula
of the solution to the Laplace equation (see Rjasanow and Stein-
bach [2007], Eq. (1.6)):

u(x) =

∫
Γ=∂Ω

G(x ,y)
∂u(y)

∂n
dsy −

∫
Γ

∂G(x ,y)

∂n(y)
u(y)dsy ,x ∈ Ω , (S2)

G(x ,y) =
1
4π

1
∥x −y∥

, x ,y ∈ R3 , (S3)

∂G(x ,y)

∂n(y)
=

1
4π

n(y) · (x −y)

∥x −y∥3
, (S4)

where the Green’s function G denotes the fundamental solution of
the Laplace equation in three dimensions and ∂/∂n = n · ∇ is the
directional derivative on the boundary normal pointing outwards.
There are more general forms of the two terms in Eq. (S2):

(Ṽw)(x) =

∫
Γ
G(x ,y)w(y)dsy , x ∈ Ω , (S5)

(Wv)(x) =

∫
Γ

∂G(x ,y)

∂n(y)
v(y)dsy , x ∈ Ω . (S6)

The quantities (Ṽw) ∈ R and (Wv) ∈ R are defined for a point x
inside the domain Ω. They are called single layer respectively double
layer potential because they resemble the electric field generated
by a single layer of electric charges on the surface Γ and two layers
of opposite charges on the surface. They transform the single layer
chargesw(y) ∈ R and double layer charges v(y) ∈ R defined on the
surface Γ to potentials defined inside the domain Ω.

Now returning to the representation formula of the solution (see
Eq. (S2)), it is natural to define the boundary value u and the normal
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derivative ∂u/∂n as the interior limit at the boundary of correspond-
ing variables defined inside the domain. To set up equations dealing
with the values on the boundary, we need to find the interior limit
of the values and normal derivatives of the single and double layer
potentials. The two limits are related to the interior trace operator
γ int0 and interior co-normal derivative γ int1 (see Steinbach [2007],
Eq. (1.3) (1.7)):

γ int0 f (x) = lim
x̃ ∈Ω→x ∈Γ

f (x̃) , (S7)

γ int1 f (x) = lim
x̃ ∈Ω→x ∈Γ

n(x) · ∇f (x̃) . (S8)

We could use the trace operator and co-normal derivative to re-write
the representation formula (see Eq. (S2)):

u(x) = Ṽ (γ int1 u)(x) −W (γ int0 u)(x),x ∈ Ω . (S9)
If we apply the trace operator and co-normal derivative to both sides
of the equation, we could in the end obtain two integral equations

γ int0 u(x) = γ int0 Ṽ (γ int1 u)(x) − γ int0 W (γ int0 u)(x),x ∈ Γ , (S10)
γ int1 u(x) = γ int1 Ṽ (γ int1 u)(x) − γ int1 W (γ int0 u)(x),x ∈ Γ . (S11)

These two equations are called boundary integral equations (BIE).
Assume that x ∈ Γ is locally flat, we can calculate the interior

value limit (interior trace) and interior normal derivative limit (inte-
rior co-normal derivative) at x for both, single layer potential and
double layer potential, as follows:

γ int0 (Ṽw)(x) = (Vw)(x) , (S12)

γ int1 (Ṽw)(x) =
1
2w(x) + (K ′w)(x) , (S13)

γ int0 (Wv)(x) = −
1
2v(x) + (Kv)(x) , (S14)

γ int1 (Wv)(x) = −(Dv)(x) . (S15)
Please note, that for the four equations above, the functions are all

defined on Γ. On the right hand side, we introduce a set of integral
operators since they are actually what we can use for the calculation.
Their explicit forms are as follows:

(Vw)(x) =
1
4π

∫
Γ

w(y)

∥x −y∥
dsy , (S16)

(K ′w)(x) =
1
4π lim

ε→0

∫
y∈Γ:∥y−x ∥>ε

(y − x) · n(x)

∥x −y∥3
w(y)dsy , (S17)

(Kv)(x) =
1
4π lim

ε→0

∫
y∈Γ:∥x−y ∥>ε

(x −y) · n(y)

∥x −y∥3
v(y)dsy . (S18)

In the equations above, V is called the single layer operator. It
is the potential taking single layer charges on the boundary Γ into
account. K is called the double layer operator. It is the potential
induced by double layer charges outside the infinitesimal neighbor-
hood near x . Please note, that its integral domain has an increasingly
smaller hole near x . In such a hollow integral domain the kernel
is not singular. The local contribution of double layer charges v in
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the infinitesimal neighborhood is included in the −v/2 term. K ′ is
called the adjoint double layer operator. As the adjoint operator of
K , it accounts for the normal derivatives induced by single layer
charges except those near x . Similarly, the local contribution of the
normal derivative induced by single layer chargesw is included in
thew/2 term.

The hypersingular operator D is related to the normal derivatives
of the double layer potential. It does not even have an explicit
representation as a Cauchy singular surface integral. However, we
can evaluate it in the weak sense. Consider two continuous functions
u and v defined on Γ. We obtain the following relationship:

⟨u,Dv⟩Γ =

∫
Γ

∫
Γ
u(x)Dv(y)dsydsx ,

=
1
4π

∫
Γ

∫
Γ

curlΓu(y) · curlΓv(x)
∥x −y∥

dsydsx , (S19)

where
curlΓu(x) = n(x) × ∇x ũ(x) (S20)

is the surface curl operator and ũ defined in R3 is an arbitrary
extension of u defined on Γ.
Ideally, after we choose one of the boundary integral equations,

it holds everywhere on the boundary. To solve it numerically, we
could only find the best solution in a finite-dimensional space. In our
cases, we use triangles to represent the boundary Γ. In order to get
a smooth solution, the single layer chargesw are at least piece-wise
constant on each triangle, while the double layer charges must be
continuous on the boundary Γ.
Suppose the mesh consists of Nf faces and Nv vertices, we can

define Nf piece-wise constant boundary elements ψ 0 (Figure S1
right) on each face, and Nv piece-wise linear boundary elements
ψ 1 (Figure S1 left) for each vertex. Each piece-wise linear boundary
element associated with a vertex can can be further decomposed
resulting in linear functions defined on its adjacent triangles.

The solution consists of single layer chargesw and double layer
charges v approximated by these boundary elements:

w =

Nf∑
i=1

wiψ
0
i , v =

Nv∑
i=1

viψ
1
i . (S21)

To find the values of coefficientswi andvi , there are two common
approaches. They are called collocation boundary element method
and Galerkin boundary element method respectively. The Galerkin
boundary elementmethod ismore costly, but alsomore accurate, and
its convergence and consistency is well studied. For the collocation
boundary element method, the boundary integral equations are
expected to hold exactly at several points on the surface, for example
on the vertices.1 For the Galerkin boundary element method, the
boundary integral equation holds in a weak sense. Both sides of
the continuous boundary integral equations are multiplied by a test
function and then integrated over the whole domain. This integral
is expected to be the same for both sides. The test function is the
same as the basis function ψ 0 respectively ψ 1. Using a series of
different test functions, we obtain a series of linear equations about
the coefficientswi and vi . Solving this set of linear equations gives
us the best single and double layer charge coefficientswi and vi .
1Please note, that interior solid angles have to be taken into account.

Fig. S1. Continuous piece-wise linear basisψ 1 defined on vertices (left) and
discontinuous piece-wise constant basisψ 0 defined on triangles (right). The
superscript (1 and 0) denotes the maximal order of the polynomials. The grid
on the floor indicates the triangle meshes, the vertical direction indicates
the strength of the basis function.

As a concrete example, we consider a Neumann problem. Given
the normal derivatives γ int1 u =

∑Nf
i=1 дiψ

0
i on the boundary, we

look for unknown potentials γ int0 u on the boundary. We use the
boundary integral equation derived from the co-normal derivative
of the potential (see Eq. (S11)):

γ int1 u(x) = γ int1 Ṽ (γ int1 u)(x) − γ int1 W (γ int0 u)(x),x ∈ Γ . (S22)

Using the boundary conditions one obtains
Nf∑
i=1

дiψ
0
i (x) =

Nf∑
i=1

(
1
2дiψ

0
i + дiK

′ψ 0
i

)
(x) +

Nv∑
j=1

(Dvjψ
1
j )(x) . (S23)

Then, we multiply both sides of the equation by a test functionψ 1
k

and integrate over the whole surface Γ:∫
Γ
ψ 1
k (x)

©­«
Nf∑
i=1

(
1
2дiψ

0
i − дiK

′ψ 0
i

)
(x) −

Nv∑
j=1

(Dvjψ
1
j )(x)

ª®¬dsx = 0 ,

(S24)
respectively, in a more compact notation,

Nv∑
j=1

⟨ψ 1
k ,Dψ

1
j ⟩Γvj =

Nf∑
i=1

(
1
2 ⟨ψ

1
k ,ψ

0
i ⟩Γ − ⟨ψ 1

k ,K
′ψ 0
i ⟩Γ

)
дi . (S25)

For Nv test functionsψ 1
k , we can write Nv linear equations. The

inner products such as ⟨ψ 1
k ,Dψ

1
j ⟩Γ represent matrices. To evaluate

the value of these entries, it involves an inner integral over the
support of the basis function and an outer integral over the support
of the test function. Usually, pure numerical quadrature rules [Sauter
and Schwab 2010], or the combination of numeric quadrature rules
and analytical solutions [Rjasanow and Steinbach 2007; Steinbach
2007], are combined to calculate the value of these entries. By solving
this set of linear equations, we can obtain the Dirichlet solution
up to a constant difference. The constant is in the null space of the
hypersingular operator D as well as the double layer operator K .

S2 ANALYTICAL INTEGRATION OF GREEN’S
FUNCTIONS OF LAPLACE EQUATION

In this section, we compile the necessary formulas of analytical
integration of the Green’s function and its gradient over triangles
with constant or linearly varying sources to help the reader to
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Fig. S2. Definition of variables used in the analytical integration.

reproduce our approach. By default, the formulas below are all
adapted from Eibert and Hansen [1995] and Graglia [1993].

S2.1 Definition of Variables
Figure S2 illustrates the definition of variables used in the analytical
integration. Assume there is a signed triangle whose vertices are
r1,r2,r3. This triangle will be the domain over which the Green’s
function and its gradient are integrated. We evaluate the integral at
a field point r .
All the computations are carried out in the local frame û, v̂, ŵ ,

with origin at the first vertex r1. In this local coordinate system, ŵ
is effectively the direction of the outward normal n of this triangle.
Opposed to each vertex r i is the i-th edge whose length is li , with
corresponding height hi , and outward edge normal direction m̂i in
the triangle plane. The i-th edge of the triangle is associated with a
positive direction ŝi (direction is counter-clockwise if looking from
the outward normal direction of the triangle).
In this coordinate system, the field point r at which the Green’s

function is evaluated has the coordinates (u0,v0,w0). The distance
from the field point to the i-th edge is R0i ; the distance from the field
point to the begin and end vertices of the i-th edge is R−i and R+i
respectively.
The field point can be projected onto the triangle plane. The

projection point has a signed distance t0i to the i-th edge, which
is positive if the projection point is on the outer side of the edge,
while the triangle is located on the interior side of the edge. The
distance from the projection point to the begin and end point of the
i-th edge is t−i and t+i respectively.

Finally, the field point can be projected to the i-th edge. This point
defines the origin on the i-th edge where si = 0. The positions of
the begin and end point of the i-th edge are thus defined as s−i and
s+i respectively.

Graglia [1993] provides the following equations to calculate the
R, s and t variables:

s−1 = −
(l3 − u0)(l3 − u3) +v0v3

l1
, (S26)

s+1 =
(u3 − u0)(u3 − l3) +v3(v3 −v0)

l1
, (S27)

s−2 = −
u3(u3 − u0) +v3(v3 −v0)

l2
, (S28)

s+2 =
u0u3 +v0v3

l2
, (S29)

s−3 = −u0 , s
+
3 = l3 − u0 , (S30)

t01 =
v0(u3 − l3) +v3(l3 − u0)

l1
, (S31)

t02 =
u0v3 −v0u3

l2
, (S32)

t03 = v0 , (S33)
t+3 = t−1 , t

−
2 = t+1 , t

−
3 = t+2 , (S34)

t−1 =

√
(l3 − u0)2 +v20 , (S35)

t+t =
√
(u3 − u0)2 + (v3 −v0)2 , (S36)

t+2 =

√
u20 +v

2
0 , (S37)

R0
[1,2,3] =

√
w2
0 + (t

0
[1,2,3])

2 . (S38)

In addition to these basic variables, some auxiliary functions are
also introduced:

f2i = ln
R+i + s

+
i

R−i + s
−
i
, (S39)

βi = tan−1
t0i s
+
i

(R0i )
2 + |w0 |R+i

− tan−1
t0i s

−
i

(R0i )
2 + |w0 |R−i

, (S40)

β = β1 + β2 + β3 . (S41)

S2.2 Helmholtz Decomposition
We first discuss the detailed formulas for the full Helmholtz decom-
position using analytical integration. Assume the liquid is contained
in the domain Ω, whose boundary is Γ, which is already discretized
by triangles. Each vertex i is associated with the velocity ui , and a
piece-wise linear basis functionψ 1

i (Figure S1). For such a velocity
field defined over the boundary Γ, we can construct the harmonic
velocity field defined inside the domain Ω:

ϕ(x) = −

∫
Γ
n(y) · u(y)

1
4π

1
|x −y |

dsy ,x ∈ Ω , (S42)

A(x) = −

∫
Γ
n(y) ×u(y)

1
4π

1
|x −y |

dsy ,x ∈ Ω , (S43)

ũ = −∇ϕ + ∇ ×A (S44)

=

∫
Γ
n(y) · u(y)∇x

1
4π

1
|x −y |

dsy

−∇x ×

∫
Γ
n(y) ×u(y)

1
4π

1
|x −y |

dsy

=

∫
Γ
n(y) · u(y)∇x

1
4π

1
|x −y |

dsy

+

∫
Γ
(n(y) ×u(y)) × ∇x

1
4π

1
|x −y |

dsy . (S45)

In the discretized form, the boundary Γ consist of triangles, and
the velocity field over the boundary are represented by summation
of linear bases defined on triangle meshes. Inside the triangle, the
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velocityu is linearly interpolated by the velocity values on the three
vertices. Meanwhile, the outward normal vector n of a triangle
is constant. The integral in Eq. (S45) can be used to evaluate the
reconstructed velocity inside the fluid. We need to evaluate the
velocity on the fluid boundary. Specifically, we need to evaluate
the volume velocity, but take its limit at the interior limit of the
fluid boundary, and furthermore integrate it with a test linear basis
function defined on the fluid boundary. Hence, in the end, we need
to evaluate a double integral over pairs of triangles.

Let us focus on one pair of target triangleT and source triangleT ′

corresponding to a part of the integral domain of the outer and inner
integral respectively. Each triangle has three linear basis functions
λ[1,2,3](·) and three vertices have velocities u[1,2,3]. The i-th linear
basis function λi (·) has value 1 on the i-th vertex, and value 0 on
the i-th edge opposed to the i-th vertex. We focus on the i-th test
function λi on the target triangle. The ϕ part and the A part of the
integral are:

c j = n · u j , (S46)
J j = n ×u j , (S47)
∇x = −∇x ′ , (S48)

Iϕ = −

3∑
j=1

1
4π

∫
T
λi

∫
T ′

c jλ
′
j∇

′ 1
|x − x ′ |

da′da , (S49)

IA = −

3∑
j=1

1
4π

∫
T
λi

∫
T ′

J j × λ
′
j∇

′ 1
|x − x ′ |

da′da . (S50)

There are two scenarios to consider: identical triangles T = T ′

and different trianglesT , T ′. We first consider the different triangle
integral. In this case, we use a three point quadrature rule to evaluate
the outer integral over triangleT and use analytical integration over
T ′:

Iϕ = −
1
4π

3∑
k=1

wkλi (xk )
3∑
j=1

∫
T ′

c jλ
′
j∇

′ 1
|xk − x ′ |

da′ , (S51)

IA = −
1
4π

3∑
k=1

wkλi (xk )
3∑
j=1

∫
T ′

J j × λ
′
j∇

′ 1
|xk − x ′ |

da′ , (S52)

where xk is the k-th quadrature point on target triangle T , andwk
is the quadrature weight, which is one third of the target triangle
area.

They all share the same core, which depends on the source shape
function λ′j :

I core(j) =

∫
T ′
λ′j∇

′ 1
|x − x ′ |

da′

= I1(j) + I2(j) , (S53)

I1(j) = n

∫
T ′
λ′j

w0
|x − x ′ |3

da′ , (S54)

I2(j) =

∫
T ′
λ′j∇

′
T

1
|x − x ′ |

da′ , (S55)

in which ∇′
T denotes the gradient operator on x ′ only considering

components inside the triangle plane.

The normal component I1(j) is further decoupled:
I1(j) = n(I3(j) + I4(j)) , (S56)

I3(j) = m̂j ·
w0
hj

3∑
i=1

m̂i f2i , (S57)

I4(j) =
t0j
hj

sign(w0)β . (S58)

The tangential component I2(j) can be decoupled as follows:
I2(j) = I5(j) + I6(j) , (S59)

I5(j) =

∫
T ′

∇′
T

(
λ′j

|x − x ′ |

)
da′ , (S60)

I6(j) =
m̂j

hj

∫
T ′

1
|x − x ′ |

da′ . (S61)

The expanded form of I5(j) is given by∫
T ′

∇′
T

(
λ′j

|x − x ′ |

)
da′ =

3∑
i=1

m̂i

∫
∂T ′

λ′j

|x − x ′ |
dl ′

= (R+j+1 − R−j+1 − s−j+1 f2j+1)
m̂j+1
lj+1

+ (R−j−1 − R+j−1 + s
+
j−1 f2j−1)

m̂j−1
lj−1

. (S62)

Finally, I6(j) contains a single layer potential with constant charges
over the triangle:

I6(j) =
m̂j

hj
(−|w0 |β +

3∑
i=1

t0i f2i ) . (S63)

I core(j) has to be multiplied with c j and cross-producted by J j to
conclude the computation in Eq. (S51) and (S52).

In another scenario, the source and target triangles overlap. Fur-
thermore the field point should be the interior limit of the triangle;
in other words:w0 → 0−. Please note, that I core is part of the inner
integral. For the outer integral, terms can benefit from a more an-
alytical integral expressions. For example, I3 = 0 because w0 = 0.
For the I4 term, inside the triangle, β = 2π , while sign(w0) = −1 if
x is approaching from the interior side of the triangle. We have not
yet found a simplification of

∫
T λi I5(j)da, so that the outer integral

is still evaluated using quadrature rules. For I6, the double integral
reads:

m̂j

hj

∫
T
λi

∫
T ′

1
|x − x ′ |

da′da . (S64)

The double integral is provided in Sievers et al. [2005] and Eq. (8)
therein.

S2.3 Magnetic and Pressure Problem
When evaluating the operatorK in the context of the magnetic prob-
lem, the integration of a double layer potential of linearly varying
charges integrated over a triangle is required. The related formula
is the scalar part of the I1 integral in Eq. (S54).
To evaluate the gradient of the double layer potential with a

charge distribution given by a linear basis functionψ 1, the surface
curl of a scalar function over a triangle is required, and the integral
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of the gradient of a single layer potential with constant charges
over a triangle. Assume the triangle has three charges c1, c2, c3 on
its three vertices, r1,r2,r3. The charges are linearly interpolated
on the triangle so the gradient of the scalar field is constant on the
triangle. The surface curl is given by

curlT (c) =
1

2Area ((c3 − c2)r1 + (c1 − c3)r2 + (c2 − c1)r3) . (S65)

The gradient of single layer potential with constant charges can
be written in the following form:∫

T ′
∇

1
|x − x ′ |

da′

= −

∫
T ′

∇′ 1
|x − x ′ |

da′

= −(nw0

∫
T ′

1
|x − x ′ |3

da′ + ∇′
T ′

∫
T ′

1
|x − x ′ |

da′)

= −(nsign(w0)β +
3∑
i=1

m̂i f2i ) . (S66)

When evaluating the gradient at the quadrature point inside the
source triangle, sign(w0) = −1 and β = 2π .
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