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Fig. 1. Simulation of a magnetic fluid placed in between two electromagnets. Once the strength of the upper magnet is increased, the fluid previously placed
on the ground is climbing up until it is fully attracted to the top. Then, the strength of the lower magnet is increased while the strength of the upper one is
decreased getting the fluid attracted to the bottom.

We devise a novel surface-only approach for simulating the three dimen-
sional free-surface flow of incompressible, inviscid, and linearlymagnetizable
ferrofluids. A Lagrangian velocity field is stored on a triangle mesh captur-
ing the fluid’s surface. The two key problems associated with the dynamic
simulation of the fluid’s interesting geometry are the magnetization process
transitioning the fluid from a non-magnetic into a magnetic material, and
the evaluation of magnetic forces. In this regard, our key observation is that
for linearly incompressible ferrofluids, their magnetization and application
of magnetic forces only require knowledge about the position of the fluids’
boundary. Consequently, our approach employs a boundary element method
solving the magnetization problem and evaluating the so-called magnetic
pressure required for the force evaluation. The magnetic pressure is added
to the Dirichlet boundary condition of a surface-only liquids solver carry-
ing out the dynamical simulation. By only considering the fluid’s surface
in contrast to its whole volume, we end up with an efficient approach en-
abling more complex and realistic ferrofluids to be explored in the digital
domain without compromising efficiency. Our approach allows for the use
of physical parameters leading to accurate simulations as demonstrated in
qualitative and quantitative evaluations.
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1 INTRODUCTION
Fluid simulations are one of the core topics of research within the
computer graphics and visual computing community [Chern et al.
2016; Enright et al. 2002; Foster and Fedkiw 2001; Koschier et al.
2019; Larionov et al. 2017; Stam 1999; Weißmann and Pinkall 2010].
Researchers are attracted to this topic not only for its scientific value
and because of several industrial application such as for example in
the context of visual effects, but also simply for its own beauty.
In recent years, researchers started to devise new approaches

and algorithms addressing fascinating phenomena related to fluids,
for example for simulating water bells, droplets and jet collisions
by just making use of the information on the fluid’s surface [Da
et al. 2016], by employing vortex sheets for simulating turbulent
plumes [Pfaff et al. 2012] or soap films [Da et al. 2015], or even by
employing variable thickness, viscous vortex filaments to simulate
underwater bubble rings or “chandeliers” formed by ink dropping
into liquid [Padilla et al. 2019].
In parallel to the development of new simulation methods, new

physical models were devised progressively such as for surface
tension [Akinci et al. 2013; Schroeder et al. 2012; Zheng et al. 2015],
fluid viscosity [Bergou et al. 2010; Goldade et al. 2019; Larionov et al.
2017; Nagasawa et al. 2019], phase changes [Stomakhin et al. 2014],
non-Newtonian fluids [Fang et al. 2019; Zhu et al. 2015b], and, e.g.,
the interaction of liquids with human hair [Fei et al. 2017].
Furthermore, recent work explores neural networks in order to

represent details of fluids, for example in the context of temporal
coherence [Xie et al. 2018], liquid splash modeling [Um et al. 2018],
Lagrangian simulations [Ummenhofer et al. 2020], or even style-
transfer [Kim et al. 2020].
Recently, the large-scale simulation of magnetic fluids was ad-

dressed within the SIGGRAPH community using smoothed-particle
hydrodynamics (SPH) [Huang et al. 2019] and level-sets [Ni et al.
2020]. These so-called ferrofluids are colloidal liquids containing
nanoscale magnetic particles that react to an external magnetic field
without solidifying [Rosensweig 1988, 1997]. Ferrofluids have raised
much interest because of their applications in medicine [Kafrouni
and Savadogo 2016], energy harvesting [Alazemi et al. 2015], in
the context of the optimization of loudspeakers [Rosensweig et al.
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Fig. 2. The ferrofluid is trapped between two planes and exposed to an increasing magnetic field perpendicular to the planes. This lead to the formation of a
characteristic labyrinth pattern [Dickstein et al. 1993; Rosensweig et al. 1983] as shown in this sequence (left: photorealistically rendered; right: mesh view).

2008] and adaptive deformable mirrors [Brousseau et al. 2007]. More-
over, as presented in SIGGRAPH’s art gallery, the Japanese artist
Sachiko Kodama [2008] employed ferrofluids to build organic shape-
changing art forms. In contrast to regular (i.e. non-magnetic) fluids,
ferrofluids seem to be a natural choice for building such structures
since their dynamic behavior can easily be controlled by an external
magnetic field as illustrated in Figure 1. Observing the use of fer-
rofluids in art is also not surprising from an aesthetics’ perspective
given their visually appealing appearance mainly caused by their
interesting surface geometry including their characteristic spikes.
While ferrofluids behave like regular Newtonian fluids in the ab-
sence of an external magnetic field, once a magnetic field is applied,
the magnetic particles within the fluid arrange according to the
field lines of the magnetic field so that the fluid starts forming these
spikes. While a strong magnetic field strength increases the height
of the spikes, the strength of the surface tension determines the
wavelength (i.e. the distance between the individual spikes) and
influences their smoothness.
The influence of magnetic effects is mostly reflected in the ge-

ometry of the free-surface for which reason the development of a
surface-only approach [Da et al. 2016] for the simulation of ferroflu-
ids is well motivated. Such an approach purely acts on the fluid’s
surface potentially saving computation time. In this contribution,
we devise a novel surface-only approach for simulating the three
dimensional free-surface flow of incompressible, inviscid, and lin-
early magnetizable ferrofluids. We incorporate the magnetic effects
by only making use of the information available on the fluid’s sur-
face. For the phenomena we are interested in, we can assume that
the movement of the fluid is slow compared to its response to the
magnet, so that the fluid reaches its equilibrium within the external
field instantly. Under such a quasi-static assumption, there are two
key challenges we have to address. The first challenge is the magne-
tization problem: given a magnetic environment, how does the fluid
react to the magnetic field? The second challenge is, once we know
how the fluid is magnetized, how does this change its movement?
To phrase it another rather way: how to apply the magnetic forces?

Most previous work [Cao and Ding 2014; Gollwitzer et al. 2007;
Lavrova et al. 2006, 2008] use the finite element method (FEM) or
couple a FEM with a boundary element method (BEM) to solve
the magnetization problem. These approaches all require volume
meshes which hinders the efficient simulation with dynamic topol-
ogy changes. Particle methods [Huang et al. 2019; Ishikawa et al.
2012, 2013] do not require re-meshing, but still need to fill the whole
volume with sample points. We observe that in the case of a lin-
early magnetizable fluid (which is a good approximation when the
external magnetic field is weak), the BEM is sufficient to solve the
magnetization problem. As a consequence, no volume discretization

is required. Furthermore, we observe that, if the ferrofluid is incom-
pressible, the magnetic forces can be applied by adding the gradient
of a magnetic pressure field to the body force. Such a magnetic pres-
sure field is consistent across a large number of theories in physics
ranging from classic theories to their modern counterparts [Byrne
1977]. In addition, the magnetic pressure is similar to surface tension
and can be applied by modifying the Dirichlet boundary condition
at the fluid-air interface in the pressure-projection step of a fluid
solver. Based on these insights, we are convinced that the surface
mesh alone is sufficient to incorporate magnetic effects.
The surface-only liquid simulation assumes the fluid to be in-

compressible, thus divergence free, and inviscid, thus irrotational.
Under these two assumptions the velocity of the interior of the
fluid can be uniquely determined by the surface velocity field for a
connected domain. Therefore, the information on the fluid’s surface
is sufficient to drive the whole simulation. The simulator leverages
a surface tracking procedure that maintains a water tight triangle
mesh of the liquid and employ the mesh for the dynamic simula-
tion. We additionally solve the magnetization problem using a BEM
based on the surface mesh, and calculate the magnetic pressure
discontinuity on the surface. The magnetic pressure discontinuity
at the fluid-air surface is added on top of the pressure discontinuity
caused by surface tension. The two together are then fed into the
surface-only fluid simulation to perform the simulation.
We aim for the development of a novel surface-only approach

addressing the dynamical simulation of ferrofluids. In this regard,
our main technical contribution are as follows.

• We incorporate magnetic phenomena within a surface-only
fluid approach.

• We improve the Helmholtz decomposition step in surface-
only fluid solvers by devising a more accurate analytic inte-
gration process.

• We improve the accuracy of the pressure projection step
within surface-only fluid solvers by a Galerkin BEM.

Our method can accurately simulate the complex dynamics of
ferrofluids such as shown in Figure 1, as well as the emergence of
their characteristic patterns as demonstrated in Figure 2.

2 RELATED WORK
In this section, we provide an overview of related work. Our contri-
bution primarily addresses magnetic phenomena for which reason
we specifically focus on related work in this regard. In addition, we
briefly discuss related fluid solvers and boundary element methods
(BEM).

ACM Trans. Graph., Vol. 39, No. 6, Article 174. Publication date: December 2020.



Surface-Only Ferrofluids • 174:3

2.1 Simulation of Ferrofluids
In general, there are numerous ways to incorporate magnetic effects
into fluid solvers depending on their specific types.
For Eulerian fluid solvers, recent work by Ni et al. [2020] em-

ployed level-sets to track the interface of the magnetic substance
and solve the magnetic field problem in a Cartesian marker-and-cell
(MAC) grid [Harlow and Welch 1965] by finite differences. They
incorporated the magnetic effects by adding a magnetic pressure
term to the Dirichlet boundary condition of the Poisson pressure
solver within their fluid simulation framework. Their solver can
successfully produce the dynamic motion of various magnetic sub-
stances including ferrofluids. However, they need to discretize both,
the fluid and air voxels, leading to large number of unknowns. Liu
et al. [2011] simulated ferrofluid droplets by tracking the surface
using a particle level-set method and solving the magnetic field
on a Cartesian staggered grid by a finite volume approach adding
the magnetic force as a Helmholtz body force. Zhu et al. [2011]
employed a similar approach to simulate ferrofluid droplets, but
used a level-set method instead.
In other contributions, researchers discretize the magnetic sub-

stance using particles. Based on this Lagrangian perspective, Huang
et al. [2019] proposed to employ the concept of smoothed magnetic
particles to sample the ferrofluid domain, and to calculate the mag-
netic forces on each of the magnetic particles. Their method handles
the surface and body magnetic force uniformly, and does not re-
quire the explicit handling of the boundaries of the fluid domain.
Although their method is augmented with fast multipole summa-
tions, the computation time is still proportional to the volume of the
liquid. Prior to that, Ishikawa et al. [2012; 2013] used dipole magnets
and smooth particle hydrodynamics (SPH) to simulation the motion
of magnetic liquids. However, they found it necessary to augment it
with a procedural modeling approach generating the spike pattern.
Yoshikawa et al. [2010] presented another Lagrangian approach
employing FEM to solve the magnetic part. However they were not
able to create the spike pattern based on physical principles.
The Lagrangian view was also adopted in the context of mag-

netic rigid-body simulations. Thomaszewski et al. [2008] sampled
the volume of a rigid body with magnetic dipoles and magnetized
them only with the external field. Their approach is sufficient to
capture some magnetic effects, however the forces between each
magnetic dipole can be too large and crash a simulation. Later on,
Kim et al. [2018] improved the mutual induction by generalizing
microscopic magnetic equations to macroscopic scenarios. Both of
these methods were designed for rigid bodies where the particles are
always well separated. For fluid particles often closely located next
to each other, these methods can potentially lead to instabilities.
The majority of earlier successes in the computational physics

community with respect to simulating characteristic spike pat-
terns of ferrofluids is limited to the equilibrium shape. Several au-
thors [Boudouvis et al. 1987; Cao and Ding 2014; Gollwitzer et al.
2007; Lavrova et al. 2006, 2008] employed FEM, or coupled FEM-BEM
techniques to solve the magnetic field problem. The FEM allows for
simulating the nonlinear magnetization law, but it requires to apply
a re-meshing procedure in every step of the dynamic simulation.

Except these static simulations, Nochetto et al. [2016a; 2016b] devel-
oped a coupled Navier-Stokes and quasistatic Maxwell model, and
solved it by using FEM in two dimensions.

The way we incorporate magnetic effects is mostly related to the
work of Boudouvis et al. [1987], Cao and Ding [2014], Gollwitzer et
al. [2007], and Lavrova et al. [2006; 2008]. They enforce the balance
between surface tension, gravity potential and magnetic pressure
discontinuity on the ferrofluid-air boundary and update the position
of surface meshes according to the calculated magnetic pressure.
The major difference between our method and theirs is that we use
a simplified linear magnetization model, which allows us to use only
the surface to calculate the magnetic field, and apply the magnetic
pressure discontinuity. This is the key concept difference that leads
to higher efficiency allowing for simulating larger problems with
higher complexities.

2.2 Mesh-based Fluid Simulation
Since at least the seminal work of Stam [1999], the simulation of
fluids is an established research focus within computer graphics
and these days an ongoing topic within the whole visual computing
community. For example, Bridson and Müller provided an introduc-
tion to fluid simulation from a computer graphics’ perspective in
their SIGGRAPH course [2007].
Since the magnetic part of our method requires a triangulated

mesh representing the fluid’s boundary, methods explicitly track-
ing [Müller 2009; Wojtan et al. 2011] the surface are mostly related.
In general, plenty of surface tracking methods have been presented
in the literature. Brochu and Bridson [2009] advect the explicit tri-
angle meshes, and employ continuous collision detection to detect
and resolve collisions. Topology changes and mesh improvements
are supported. This method was improved by Da et al. [2014] to
support multi-material tracking. Wojtan et al. [2009] make use of
a signed distance field to assist topology changes while maintain-
ing a Lagrangian mesh. Chentanez et al. [2015] achieved a balance
between speed and accuracy by tracking manifold triangle meshes,
deleting intersecting triangles, and filling the holes. Li et al. [2016]
track multiple materials using signed distance and indicator func-
tions, and reconstruct the meshes between materials at every frame.
Bojsen-Hansen et al. [2013] addressed the problem of tracking high
resolution surface meshes with low resolution grids, reducing arti-
facts in the meshes by smoothing or augmented dynamics on the
surfaces.
Aside from methods dedicated to tracking the surface, several

other work address coupled fluid simulation with surface meshes
or interior meshes. Chentanez et al. [2007] first generated a surface
of the liquid, then filled the inside with lattice-based tetrahedral
meshes. Thurey et al. [2010] devised a multi-scale approach to sim-
ulate surface tension effects by decomposing surface tension into a
grid part employing Eulerian grids and a sub-grid part employing La-
grangian surface meshes. Zhang et al. [2012] used a fast deformable
surface to approximate the motion of droplets and their merging
behavior. Ando et al. [2013] developed a highly adaptive tetrahedral
mesh approach solving the pressure projection problem in fluid sim-
ulation. Clausen et al. [2013] proposed to use tetrahedral Lagrangian
meshes to simulate liquids and solids in a unified way. In order to
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ALGORITHM 1: Numerical integration procedure updating the
state (i.e. vertex positions and velocities) of the magnetic fluid.

Input: Current fluid state.
Output: Updated fluid state.

1 Advection; Section 4.1.
2 Enforce harmonic velocity by Helmholtz decomposition; Section 4.2.
3 Calculate surface tension and gravity potential. Section 4.3.
4 Calculate magnetic pressure using Algorithm 2.
5 Solve the pressure using a BEM; Section 4.5.
6 Apply the negative gradient of the pressure to the velocity.

ALGORITHM 2: Evaluation procedure of the magnetic pressure.
Input: Vertex positions.
Output: Magnetic pressure at vertices.

1 Update the external magnetic field.
2 Evaluate the external magnetic scalar potential; Section 4.4.1.
3 Calculate magnetic double layer charges at vertices; Section 4.4.2.
4 Evaluate magnetic pressure discontinuities at vertices; Section 4.4.4.

take into account the fluid dynamics in different codimensional
spaces, Zhu et al. [2014] introduced free-surface flow on simplicial
complexes. Zheng et al. [2015] used adaptive tetrahedral meshes to
simulate the liquid with an implicit solver accounting for surface
tension effects. Da et al. [2016] simulated the fluid dominated by
inertia and surface tension using only the Lagrangian surface mesh.

2.3 Boundary Integral
Solving the magnetic field problem in our approach relies heavily on
boundary integrals. Boundary integrals have been used extensively
in computer graphics; e.g. for soft body simulation [James and Pai
1999], ocean waves [Keeler and Bridson 2014], fractures [Hahn and
Wojtan 2015, 2016; Zhu et al. 2015a], and mesh generation [Solomon
et al. 2017; Wang et al. 2013]. Boundary integral and boundary
element methods only require the information at the surface of the
object saving the effort to discretize and handle the interior of the
object or even the whole domain.

3 OVERVIEW
We devise a novel surface-only approach for simulating the three di-
mensional free-surface flow of incompressible, inviscid, and linearly
magnetizable ferrofluids. In this section, we provide an overview of
the approach by first explaining the general structure of a surface-
only fluid simulator and then specifically addressing the main steps
of the magnetic part. The simulation framework is summarized in
Algorithm 1, and specifically the magnetic part in Algorithm 2.

The surface-only fluid concept [Da et al. 2016] is dedicated to
fluid scenes dominated by surface tension and inertia such as fluid
droplets and water-jets where viscosity effects are negligible. As-
suming inviscid liquids, Da et al. [Da et al. 2016] concluded that the
velocity field enclosed by the liquid boundary is divergence-free
and curl-free (denoted by them as a harmonic velocity field). There-
fore the velocity in the interior of the liquid is uniquely determined
by the velocity of the boundary mesh vertices (for a contractible
domain). The surface mesh is driven by such a harmonic velocity

field, and the external forces (such as surface tension and gravity)
apply harmonic updates to the enclosed velocity field. The surface-
only fluid solver mainly comprises three main steps: advection,
Helmholtz decomposition, and solving the pressure based on a BEM.
In the advection step, vertices move to new positions based on their
velocities. After the advection step, because the positions of vertices
have changed while their velocities are remained, the new velocity
field is no longer harmonic. Then a Helmholtz decomposition based
on a boundary integral is applied to correct the normal component
of the velocity. In this regard, the tangential velocities on the surface
remain unchanged. This step ensures that the velocity field is in-
compressible. In the last step, the effects of surface tension, gravity,
and solid impact are added. The pressure discontinuities caused by
surface tension are added as Dirichlet boundary conditions, and
solid impacts are incorporated as Neumann boundary conditions
on the solid surface. A collocation BEM is used to solve the mixed
boundary value problem. Finally the negative gradient of the solved
pressure field is added to the velocities.

In Da et al. [2016], the only body force (gravity) is directly added
to each vertex. We realize that there is another way to incorporate
the body force, although the liquid is only represented by a closed
surface. Please note, that in the last step, the effects of all forces
are incorporated by a gradient of a harmonic scalar potential field,
which guarantees that the velocity update results in a harmonic
vector field. The gravity update is actually a constant vector field
pointing downwards. Such a constant vector field is the negative
gradient of the gravity potential φд = −ρд ·x , where д is the gravity
acceleration vector and x is the position vector. Hence, to apply the
gravity body force, we simply need to add the gravity potential φд
to the Dirichlet boundary conditions.

This view can be generalized to other body forces including mag-
netic body forces. Just like the gravity potential is given by the inte-
gral of the gravity body force along a path from a reference level,
the magnetic pressure is also given by the integral of the magnetic
force along an arbitrary path from a reference point. Note that the
magnetic force consists of both, body and surface forces. Hence, the
integral path needs to include the surface as well. Figure 3 illustrates
the definition of the magnetic pressure discontinuity pmag at the
surface. As pointed out by Byrne [1977], there are numerous classic
and modern theories on magnetic body forces and corresponding
surface forces. They have different forms of magnetic body pressure
and magnetic surface pressure discontinuity. However, when these
two terms are joint together, all these theories are consistent for
incompressible ferrofluids. This definition unifies gravity potential
where there is only the body part, and surface tension where there
is only the surface part.
There are two key problems to calculate the magnetic pressure

discontinuity at the surface. The first one is a magnetization problem
and the second one is to evaluate the magnetic pressure discontinu-
ity based on the calculated magnetic field after magnetization.
In the magnetization process, ferrofluids interact with external

magnetic fields. We take a quasi-static approach assuming the mag-
netic effect reaches the equilibrium instantly within a single simu-
lation frame. We further assume the external field is weak, so that
the material responses to the magnetic field linearly. We solve the

ACM Trans. Graph., Vol. 39, No. 6, Article 174. Publication date: December 2020.



Surface-Only Ferrofluids • 174:5

S
N

Air
Liquid

p0 = 0

Field-Free Zone

pbody

dp = f · dl

pmag = pbody + psurf

Fig. 3. Illustration of the magnetic pressure adapted from Byrne [1977].
From a reference point where pressure p0 is zero, we integrate the magnetic
body force f · dl along a path inside the ferrofluid to the interior limit
of the surface to get the body part of the magnetic pressure. Because the
magnetic stress tensor is discontinuous across the surface, we need to add
a surface part to obtain the final magnetic pressure discontinuity.

magnetization problem by the Galerkin BEM with the indirect dou-
ble layer potential formulation presented by Andjelic et al. [2011].
It consists of three steps: evaluating the magnetic scalar potential of
the external magnetic field, solving the double-layer charges on the
surface, and evaluating the magnetic field with the solved double
layer charges. The details will be explained in Section 4.4.
After we solve the magnetization problem, we know the mag-

netic field. Based on that we can calculate the magnetic pressure
discontinuity. The magnetic pressure discontinuity is reviewed by
Byrne [1977] and already used in literature [Boudouvis et al. 1987;
Cao and Ding 2014; Gollwitzer et al. 2007; Lavrova et al. 2006, 2008].
The magnetic pressure is evaluated at the surface and only require
quantities on the surface although it includes a line integral through
the body.
To summarize, our surface-only ferrofluid simulator consists of

two parts: the surface-only fluid simulator and the magnetic solver
which takes the mesh geometry and returns the magnetic pressure
discontinuities on the surface. The magnetic solver consists of a
BEMmagnetostatic field solver [Andjelic et al. 2011], and the second
part computing the magnetic pressure discontinuity is based on well-
established theory [Byrne 1977].

4 METHODOLOGY
After the high-level overview of our surface-only approach for sim-
ulating ferrofluids presented in the previous section, this section
provides a detailed description of our methodology. The subsections
are arranged according to Algorithm 1. In Figure 8, we visualize
the main quantities within the computation process. For an intro-
duction to the Galerkin BEM we refer to our supplemental material
and relevant literature [Rjasanow and Steinbach 2007; Sauter and
Schwab 2010; Steinbach 2007].

4.1 Advection Procedure
In the advection step, each vertex moves to its new position using its
current velocity. Collisions of triangles are resolved by surface track-
ing also handling topology changes and mesh improvements [Da
et al. 2014]. Vertex velocities are not changed in the advection step.

4.2 Helmholtz Decomposition
After the advection procedure, one can calculate the total diver-
gence and curl of the velocity field in the liquid domain based on
the velocity on its boundary. Generally, the velocity field is no
longer harmonic (i.e. divergence-free and curl-free). In order to
enforce a harmonic velocity field, a Helmholtz decomposition is
applied decomposing a vector field into two vector fields which are
divergence-free and curl-free respectively.

4.2.1 Helmholtz Decomposition in Continuous Form. Da et al. [2016]
proposed a constructive Helmholtz decomposition only keeping the
harmonic velocity. Assume after the advection, the fluid occupies
the domain Ω, whose boundary is Γ := ∂Ω, and the fluid velocity
at the boundary is u. First, a scalar field ϕ and a vector field A that
only rely on the velocities u on the boundary Γ are defined:

ϕ(x) = −

∫
Γ
n(y) · u(y)

1
4π

1
∥x −y∥

dsy , (1)

A(x) = −

∫
Γ
n(y) ×u(y)

1
4π

1
∥x −y∥

dsy , (2)

where n is the outward normal on the surface. The new divergence-
free and curl-free velocity field u is constructed as follows:

ū = −∇ϕ + ∇ ×A

=
1

4π

∫
Γ
n(y) · u(y)∇x

1
∥x −y∥

dsy

−∇x ×
1

4π

∫
Γ
n(y) ×u(y)

1
∥x −y∥

dsy . (3)

Da et al. [2016] proposed to keep the tangential component of the
original velocity field u and only update the normal component of
the velocity to that of the constructed velocity u. By keeping the
tangential velocity field, no constrains on the curl of the velocity
are applied. In reality, many of the phenomena are closely related
to vortices. Therefore only correcting the normal component could
create more phenomena that relies on vortices. However, numerical
noise accumulated in the tangential velocity field is not corrected
leading to more noisy simulation as shown in Section 5. Therefore
we decide to use the full constructed velocity u which satisfies the
assumption of the surface-only fluid simulator.

To facilitate the computation, it is helpful to modify the curl term:

∇ ×A = −∇x ×
1

4π

∫
Γ
n(y) ×u(y)

1
∥x −y∥

dsy

=
1

4π

∫
Γ
(n(y) ×u(y)) × ∇x

1
∥x −y∥

dsy . (4)

As pointed out by Da et al. [2016], the gradient part Eq. (3) and the
curl part Eq. (4) are difficult to evaluate at sharp corners (vertices)
because the gradient of the Green’s function ∇x (4π ∥x − y∥)−1 is
strongly singular. It is easier to evaluate them on flat triangles. We
first calculate the constructed velocity u in Eq. (3) at the interior
limit of symmetric quadrature points on each triangle. Then we
convert the quantities on faces to quantities defined on vertices
using the following approach.

4.2.2 Face Quadrature to Vertex Process. Assume we have a scalar
function f defined on the boundary Γ, our goal is to find its discrete
version fh =

∑
fh,iψ

1
i . Here,ψ

1
i is the continuous piece-wise linear
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function associated with vertex i (see Figure 4, left) defined on the
surface; fh,i is the coefficient of the discrete approximation fh . The
discrete approximation fh equals the continuous function in a weak
sense:

⟨ψ 1
i ,

Nv∑
j=1

fh, jψ
1
j ⟩Γ = ⟨ψ 1

i , f ⟩Γ , (5)

where ⟨·, ·⟩Γ denotes the inner product defined on the mesh bound-
ary Γ,Nv is the number of vertices, andψ 1

i is the linear basis function
defined on vertex i . The above equation is set up for each vertex
leading to Nv equations. In a more compact form, we can write

M̂h [m,n] = ⟨ψ 1
m ,ψ

1
n⟩Γ , (6)

M̂h fh = ⟨ψ 1
i , f ⟩Γ , (7)

where fh denotes the vector formed by the coefficients fh,i , M̂h is
a sparse matrix denoted as the mass matrix, and M̂h [m,n] refers to
its entry at rowm and column n.
The right hand side of Eq. (7) can be calculated by a weighted

summation of the function f at quadrature points on each triangle.
In order to get the sharp value fh , we need to solve Eq. (7). We
could also approximate the mass matrix in Eq. (6) by summing all
entries in a row or column to the diagonal entry. Each diagonal
entry becomes the area for each vertex:

M̃h [m,m] =
∑
n
⟨ψ 1
m ,ψ

1
n⟩Γ = ⟨ψ 1

m , 1⟩Γ = VertexArea(m) . (8)

If we use the approximated mass matrix M̃h to solve Eq. (7), we
obtain the smoothed version of fh :

f̃h = M̃−1
h ⟨ψ 1

i , f ⟩Γ . (9)

The amount of smoothing can be controlled by a linear combination
of sharp fh and smooth f̃h :

fh,final = (1 − η)fh + η f̃h , (10)

where fh,final is the final value on each vertex, and η ∈ [0, 1] is the

artificial smoothing coefficient. The smoothed f̃h can be considered
as the diffused sharp fh on the surface manifold. The smoothed
f̃h introduces errors, so it is only incorporated in the Helmholtz
decomposition to achieve damping. In other cases, we use the sharp
fh for accuracy. For vector-value functions, we can apply this face
quadrature to vertex conversion for each component.

4.2.3 Integration over the Triangle Surface Mesh. We evaluate Eq. (3)
and (4) for x at the quadrature points on each triangle. For each
quadrature point, we need to integrate over the whole boundary
Γ, where the velocity is linearly interpolated on triangles. Hence
the integral can be applied as a summation over all triangles. Both
integrals (3) and (4) rely on a common part which is the gradient of
a single layer potential with linearly varying charges at vertex i:

1
4π

∫
Γ
ψ 1
i (y)∇x

1
∥x −y∥

dsy . (11)

Such an integral over the boundary Γ can be decomposed to an
integral over the trianglesT (i) adjacent to vertex i . The term (11) has
an analytical solution if x is not on the triangle (see Eq. (3) and Eq. (9)

Fig. 4. Continuous piece-wise linear basis ψ 1 defined on vertices (left) and
discontinuous piece-wise constant basisψ 0 defined on triangles (right). The
superscript (1 and 0) denotes the maximal order of the polynomials. The grid
on the floor indicates the triangle meshes, the vertical direction indicates
the strength of the basis function.

in Eibert and Hansen [1995], and Appendix A). If the quadrature
point x is located outside the integral triangle, we directly use the
analytical solution. If the quadrature point is located on the integral
triangle, we need a special handling. The gradient of the single layer
potential (Eq. (11)) can be decomposed into the triangle normal
component and the triangle tangential component (Eq. (11) and (12)
in Eibert and Hansen [1995]). The triangle normal component of
Eq. (11) is discontinuous across the triangle, and must be evaluated
from the interior side of the triangle (inside the fluid domain) taking
the limit to the quadrature point on the triangle. The tangential
component is continuous on both sides of the triangle, so we can
evaluate it exactly on the quadrature point. Part of the tangential
term can be combined with the face quadrature to vertex procedure
(Eq. (7)) leading to a double integral over the same triangle, and can
benefit from analytical results [Sievers et al. 2005]. The other part
of the tangential component is still evaluated on quadrature points.

Finally, we convert the evaluated integral at quadrature points to
the vertex values by the previous face quadrature to vertex process
for each component of the constructed velocity u and blend it with
the smoothed version (Eq. (10)). We denote this by smooth damping.
Alternatively, we can multiply the sharpened velocity uniformly
by a scalar called the vacuum damping constant since the motion
is damped as if it is slowed down by the vacuum. The smoothed
velocity is not strictly harmonic because it is the low-pass-filtered
sharp, harmonic velocity. It introduces minor volume errors in the
simulation. About 50% of the smoothed velocity leads to visible
volume changes over hundreds of frames, while about 10% smoothed
velocity usually does not matter much.

We compare the partial Helmholtz decomposition (only update
normal velocity) using the Duffy transform quadrature integra-
tion [Da et al. 2016], partial Helmholtz decomposition using analyt-
ical integration, and full Helmholtz decomposition using analytical
integration. This is illustrated in the context of the simulation of
two colliding fluid jets as shown in Figure 5. The partial decom-
position with quadrature rules (top) is noisy (left) unless we use
smooth damping (middle column). Using the analytical integration
(middle) the partial Helmholtz decomposition behaves well. Full
Helmholtz decomposition (bottom) is the most stable one but sacri-
fices some velocity modes. Vacuum damping (right column) leads
to significantly different dynamic results.
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Fig. 5. Simulation of two colliding fluid jets using different Helmholtz de-
composition techniques. Top row: partial Helmholtz decomposition that
only updates the normal component of the velocity using the Duffy trans-
form [1982] adopted by Da et al. [2016]. Middle row: partial Helmholtz
decomposition using the analytical integration of the Green’s function over
triangles. Bottom row: full Helmholtz decomposition using the analytical
integration of the Green’s function over triangles. Left column: no damp-
ing. Middle column: smooth damping with 20% smooth velocity and 80%
sharp velocity. Right column: vacuum damping with sharp velocity scaled
by a factor of 0.995. The partial Helmholtz decomposition with quadrature
integration is noisy unless we use smooth damping. Using the analytical in-
tegration the partial Helmholtz decomposition behaves well. Full Helmholtz
decomposition is the most stable one but sacrifices some velocity modes.

4.3 Surface Tension and Gravity Potential
The surface tension [Cohen-Steiner and Morvan 2003] is evaluated
per vertex as done by Da et al. [2016]. The gravity potential is
given by ϕд = −ρд · x where x is the vertex position, ρ is the fluid
density, and д = (0, 0,−д)T denotes the gravity acceleration. This is
illustrated in Figure 8.

4.4 Magnetic Pressure Calculation
To calculate the magnetic pressure, we first need to solve the mag-
netization problem, where the total magnetic field is different from
the external field due to the interaction of the magnetized ferroflu-
ids. Then based on the total magnetic field, we can determine the
magnetic pressure discontinuity on the fluid boundary, and add it
to the boundary conditions of the pressure solver.
To solve the magnetization problem, we follow the method of

Andjelic et al. [2011], who compared Galerkin boundary element
methods with three different formulations with respect to precision
and efficiency. We choose the double layer potential formulation to
achieve the balance.

In the double layer potential formulation, the total magnetic field
after the ferrofluid has been magnetized is the linear combination
of the given external magnetic field vector H ext and the gradient
of a double layer scalar potential field ∇Wv generated by some
unknown double layer charges v on the surface of the object. The
linear integral operatorW is the double layer potential operator (see
supplemental material, and Rjasanow and Steinbach [2007], page
4). The operatorW transforms scalar-value double layer charges v
defined on the boundary into a scalar-value potential field defined
in space. Then a boundary integral equation about v (see Andjelic

et al. [2011], Eq. (3.19)) is set up to ensure the transmission property
of the magnetic field across the object boundary:

1
2
µ1 + µ0
µ1 − µ0

v(x) + (Kv)(x) = −µ0ϕext(x) , for x ∈ Γ , (12)

(Kv)(x) =
1

4π
lim
ε→0

∫
y∈Γ:∥x−y ∥>ε

(x −y) · n(y)

∥x −y∥3 v(y)dsy , (13)

where K is the double layer operator (see supplemental material;
Rjasanow and Steinbach [2007], page 5),ϕext is the external magnetic
scalar potential (see Section 4.4.1), µ0 = 4π ·10−7 N/A2 is the vacuum
permeability, µ1 = (1+ χ )µ0 is the permeability inside the ferrofluid,
and χ is the volume magnetic susceptibility of the ferrofluid. A
larger χ means it is more likely to be magnetized.
The unknown double layer charges v are approximated by the

discrete versionvh =
∑
vh,iψ

1
i , whereψ

1
i is the linear basis function

associated with vertex i (see Figure 4, left). For the discrete unknown
vh,i , the Galerkin BEM is used to transform the continuous Eq. (12)
into the following linear algebraic equation (see Andjelic et al. [2011],
Section 4.2): (

1
2
µ1 + µ0
µ1 − µ0

M̂h + K̂h

)
vh = −µ0M̂hϕext , (14)

in which vh denotes the vector of the unknown coefficients vh,i of
double layer charges on vertices i . Eq. (14) can be reduced to(

1
2

2 + χ
χ

M̂h + K̂h

)
vh = −µ0M̂hϕext , (15)

in whichϕext is themagnetic scalar potential on each vertex position.
The calculation is addressed in Section 4.4.1. The meaning of the
matrices M̂h and K̂h , and how to efficiently solve Eq. (15) will be
explained in Section 4.4.2.

4.4.1 Evaluation of the External Magnetic Scalar Potential at Vertices.
We express the external magnetic field as a combination of a constant
vector field and the field generated by a cluster of magnetic dipole
sources. The magnetic fieldH ext, and corresponding magnetic scalar
potential ϕext can be represented as follows:

H ext(x) =

N∑
i=1

1
4π

3(mi · r̂ i )r̂ i −mi

r3
i

, (16)

ϕext(x) = −

N∑
i=1

1
4π

r i ·mi

r3
i
, (17)

where N is the number of dipole sources, r i = x −yi is the vector
pointing from the source location yi to the field point x , ri = ∥r i ∥
is the distance, r̂ i = r i/ri is the normalized version, andmi is the
dipole moment for the source indexed by i . The magnetic scalar
potential ϕext is visualized in Figure 8.

4.4.2 Calculation of the Magnetic Double Layer Charges at Vertices.
Assume, we have Nv vertices, then the dimension of the unknown
double layer charges vh is Nv. The matrix M̂h is the mass matrix
defined in Eq. (6). The K̂h is another Nv-dimensional square matrix.
Letm be the row index and let n be the column index, the values of
the entries are

K̂h [m,n] = ⟨ψ 1
m ,Kψ

1
n⟩Γ . (18)
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Fig. 6. Double integral over the support of the source (trial) function (red
triangles in the lower right), and the support of target (test) function (blue
triangles in the upper left), see e.g. Eq. (20). The outer integral (over test
function) uses a symmetric three-point quadrature rule. The quadrature
points are marked as blue dots. For each target quadrature point, the inner
integral is evaluated using the three-point quadrature rule illustrated by
three red dots on the left, and using analytic integration over the whole
source triangle illustrated by the red triangle on the right.

As a concrete example, if we denote all the triangles adjacent to the
vertexm by T (m), and all the triangles adjacent to the vertex n by
T (n), we expand the above expression as follows:

M̂h [m,n] =
∑

p∈T (m)

∫
i
ψ 1
n (y)ψ

1
m (y)dsy , (19)

K̂h [m,n] =
∑
q,p

∫
p∈T (m)

ψ 1
m (x)

∫
q∈T (n)

n(y) · (x −y)ψ 1
n (y)

4π ∥x −y∥3 dsydsx . (20)

The mass matrix M̂h is obtained analytically and stored as a sparse
matrix. The K̂h matrix is dense and requires double integrals over
the source triangle q and the target triangle p. The inner integral
withψ 1

n (double layer potential with linearly varying charges over a
triangle) has an analytical expression (see Eibert and Hansen [1995],
Eq. (11)). The result is smooth if x is outside of the source triangle
q. Therefore, for the outer integral with ψ 1

m over target triangle
p, it is sufficient to use quadrature rules (see Figure 6, triangles
in the upper-left corner in both left and right sub-figures). We use
three symmetric quadrature points for the outer integration over the
target triangle p. Using symmetric quadrature points on a triangle
instead of a Duffy transform with tensor quadrature rules allows us
to reuse the value of the inner integral at these quadrature points
for three basis functions associated with the three vertices of the
target triangle.

We visualize one column of K̂h in Figure 7. It indicates that in each
column of K̂h , the values of entries decay quickly with increasing
distance. In addition, the difference between the analytical expres-
sion and the quadrature integration for the inner integral is small
if the evaluation point x is far away from the integral triangle q.
Hence, we switch to three point quadrature integration (see Figure 6,
left) if x is beyond some distance. In our experience, four times the
average triangle edge length of the source triangle is sufficient.
To allow for large-scale simulations, we only implement the

matrix-vector multiplication, rather than explicitly store all ma-
trices. First, each source triangle is assigned three weighted linear
basis functions corresponding to the double layer charges at the
three vertices. Then for each quadrature point on the target triangle
the contribution from all source triangles are collected, analytically

Fig. 7. From left to right: one column of the matrix K̂h with analytical inner
integral; the relative error of K̂h is evaluated with a symmetric {3,7,16}-point
quadrature rule [Zhang et al. 2009] for the inner integral compared to the
reference analytical integral result. We clearly observe that the values of the
entries in one column of K̂h quickly decay with increasing distance from
the source (diagonal entry). The relative error of the quadrature integral
is small for triangles that are far away. The maximum relative errors are
15.6%, 10.4%, and 3.5% respectively for the {3,7,16}-point quadrature rule.

for near triangles (see Figure 6, right), and numerically for far trian-
gles (see Figure 6, left). Finally for each target triangle, the double
layer potentials at quadrature points are multiplied with the corre-
sponding linear basis function and contribute to one of the vertices
of the triangle. This concludes the calculation of the outer integral.
The double layer charges (Eq. (15)) are solved by the precondi-

tioned generalized minimal residual method (GMRES) [Saad and
Schultz 1986]. The solved double layer charges are visualized in
Figure 8. We use CUDA kernels to execute the matrix-vector multi-
plication. Each thread is responsible for one target quadrature point
and collects all influences from triangle sources. To maximize per-
formance, the CUDA kernels evaluate all triangle sources using the
three-point quadrature rule. To account for the analytic integral for
triangles in the near field, we apply another correction summation.
For each target triangle we find its list of near source triangles over
which the analytic integral differs significantly from the three-point
quadrature rule. For example, if the distance between them is smaller
than four times the mean edge length of the source triangle. With
such a list, we can partially assemble the high precision matrix using
analytical integration, as well as the low precision matrix using the
three-point quadrature rule. The difference is a sparse correction
matrix. The sparse correction matrix is stored explicitly and reused.
Such a two-step scheme is more efficient than a single CUDA kernel
evaluating both, analytical and quadrature rule, depending on the
distance because it leads to less register usage and instructions on
the GPU.

4.4.3 Preconditioner. Adaptive triangle sizes result in smaller tri-
angle numbers. However, the non-uniform distribution of triangle
sizes leads to ill-conditioned Galerkin BEM equations because each
equation is weighted differently by the outer integration over the
support of test functions with different area. We tried different
precondition strategies. The first preconditioner called area precon-
ditioner multiplies each equation by the inverse of the area of the
support of the test function. The second preconditioner is a sym-
metric diagonal preconditioner [Ainsworth et al. 1999; Graham and
McLean 2006]. The third preconditioner is based on the observation
that the left hand side (LHS) matrix is dominated by elements near
each other (Figure 7). We can partially assemble the LHS matrix
using analytical integration for the Galerkin BEM Eq. (15). However,
the partially assembled matrix can be singular with close-to-zero
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singular values. Inverting this matrix can lead to a noisy result. To
invert it stably, we limit the iteration number in a GMRES solver.
We call this a partial-LHS preconditioner. In the end we choose
the symmetric diagonal preconditioner because it is more effective
than the area preconditioner, and introduces less errors than the
partial-LHS preconditioner.

4.4.4 Evaluation of the Magnetic Pressure Discontinuity at Vertices.
After we solve the double layer charges Eq. (15), we obtainvh on the
surface. To calculate the magnetic field, the gradient of the double
layer potential generated by these double layer charges is required.
The total magnetic field H is the linear combination of the external
magnetic field H ext and the gradient of the double layer potential
∇(Wvh ):

H (x) =
µ0
µ1

H ext(x) +
1
µ1

∇(Wvh )(x) , x ∈ Ω . (21)

For a complete derivation we refer to Andjelic et al. [2011] and
Eq. (3.20) therein. Eq. (21) describes the magnetic field everywhere
inside the ferrofluid. Once we know the magnetic field, we use it to
calculate the magnetic pressure discontinuity on the boundary. In
the work of Byrne [1977] and specifically in Table 2 therein, many
modern and classic theories on the magnetic forces in ferrofluids
are analyzed. Byrne concluded that all of the theories surveyed lead
to the same magnetic pressure discontinuity given by

Pmag = µ0
1
2
χ ∥H (x)∥2 +

1
2
µ0(χH (x) · n(x))2 , x ∈ Γ . (22)

This equation was also employed in a series of successful numerical
simulations for the static shapes of ferrofluids described in the com-
putational physics literature (see, e.g., Cao and Ding [2014], Eq. (10);
Gollwitzer et al [2007], Eq. (3.5); Lavrova et al. [2006], Eq. (10);
Lavrova et al. [2008], Eq. (3)). Please note, that H (x) should be con-
sidered as the limit of the interior field to the boundary (instead of
directly measuring at the boundary) sinceH is discontinuous across
the boundary and not well defined on the boundary. We evaluate the
magnetic pressure discontinuity Pmag at the face quadrature points
and convert them to vertex quantities by the procedure described
in Section 4.2.2.
The normal on each quadrature point is well defined. The only

technical difficulty in Eq. (21) and Eq. (22) is the gradient of the
double layer potential at the interior limit of the triangle quadrature
point given by

∇(Wv)(x) := lim
Ω∋x̃→x ∈Γ

∇(Wv)(x̃) . (23)

We simplify the expression on the right hand side (see Steinbach [2007],
page 135 and Lemma 6.16)1:
∂

∂x̃
(Wv)(x̃) =

1
4π

∫
Γ
v(y)

∂

∂x̃

(
∂

∂ny

1
∥x̃ −y∥

)
dsy

= −
1

4π

∫
Γ

(
curlΓ,y v(y) × ∇x̃

1
∥x̃ −y∥

)
dsy , (24)

in which the definition of the surface curl of a scalar function is
given by

curlΓv = n(x) × ∇(ṽ) . (25)
1Please note, that Steinbach’s [2007] definition of the double layer potential is negative
compared to ours.

Here, ṽ is an arbitrary extension of the function v defined on the
surface Γ to R3. The surface curl of a linear basis function is piece-
wise constant, so that we only need to evaluate the gradient of
a single layer potential with constant charges on a triangle. For-
tunately, the integral of the gradient of a single layer potential of
constant charges over a triangle has a close-form solution (see Eibert
and Hansen [1995], Eq. (4); Graglia [1993], Eq. (34)). The negative
magnetic pressure is visualized in Figure 8.

4.5 BEM Pressure Solve
The goal of the pressure solver is to evaluate the negative gradient
of the pressure and apply it as the velocity update. We improve the
accuracy of the pressure solver by replacing the original collocation
BEM with a Galerkin BEM for mixed boundary conditions.
Once we obtain the magnetic pressure at the vertices, we can

combine it with surface tension and gravity potential to formulate
the final pressure as the Dirichlet boundary condition at the fluid-air
boundary:

Ptotal(x) = −Pmag(x) + σκ(x) − ρд · x , x ∈ Γair , (26)

where x is the vertex position on the fluid-air boundary Γair, Ptotal
is the total pressure, Pmag is the magnetic pressure, κ is the signed
mean curvature, ρ is the ferrofluid density, and д is the gravity
acceleration. Please note, that there is a negative sign in front of
the magnetic pressure which is the increase of hydrostatic pres-
sure [Byrne 1977] corresponding to the loss of the magnetic energy
density. All quantities in this equation are visualized in Figure 8.
To get the pressure at solid boundaries, the following Laplace

equation is solved in three dimensions [Da et al. 2016]:

∇2P = 0 , (27)
P |air = Ptotal , (28)

∂P

∂n
|solid =

ρ

∆t
(u −usolid) · n . (29)

After the pressure P is computed, the velocity u after Helmholtz
decomposition is updated according to

unew = u −
∆t

ρ
∇P . (30)

Da et al. [2016] solve the aforementioned equation system using
the collocation BEM. It outputs the pressure and normal component
of the pressure derivatives at the vertex positions. The tangential
component of the pressure gradient is calculated per triangle based
on the pressure value on its vertices and combined together with
the normal part on the vertex to get the full gradient at the vertex
positions.
However, it is discovered that using such a collocation pipeline,

if one plugs in the gravity potential as the boundary condition, the
negative gradient does not correspond to gravity, not even to a
constant vector as illustrated in Figure 9. This motivated us to use a
higher-precision Galerkin BEM.
In the following, we summarize the main idea of our Galerkin

BEM pressure solver. For further details regarding the BEM we refer
to Rjasanow and Steinbach [2007] and specifically to Chapter 2.33
and Eq. (2.41) therein.
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(a) Final Render (b) Surface Mesh (c) Surface Tension (d) Gravity (e) ϕext (f) D.L. Charges (g) −Pmag (h) Ptotal

Fig. 8. Different stages of the pressure calculation. Given the surface mesh, we calculate the surface tension and gravity potential based on the curvature of
the mesh and vertex positions (see Section 4.3). To calculate the magnetic pressure (see Section 4.4), we first evaluate the external magnetic scalar potential
ϕex (see Section 4.4.1), and then solve the boundary integral equation to get the double layer charges (see Section 4.4.2). The double layer (D.L.) charges are
used to evaluate the negative magnetic pressure −Pmag (see Section 4.4.4). Combining surface tension, gravity potential, and negative magnetic pressure we
obtain the total pressure Ptotal (see Eq. (26)) whose negative gradient is added to the velocity field (see Section 4.5).

Fig. 9. Negative gradient of the gravity potential solved on a cubic domain.
Left: collocation BEM pipeline used by Da et al. [2016] leading to visible
errors. Right: our Galerkin BEM pipeline providing results close to the
analytical solution.

The liquid is enclosed by manifold triangle meshes. Due to the
requirement of smoothness of the solution, the pressure is approx-
imated using continuous piece-wise linear bases defined on the
vertices (see Figure 4, left). On the other hand, the normal derivative
of the pressure is approximated using piece-wise constant bases
defined on the triangles (see Figure 4, right). The pressure inside
the liquid is the combination of the single layer potential generated
by piece-wise constant charges representing boundary pressure
normal derivatives on the triangles, and the double layer potential
generated by continuous piece-wise linear charges representing the
boundary pressure value on the vertices.

When the liquid is in contact with solids, the normal derivative of
the pressure on each contact triangle is known since it must cancel
the normal component of the velocity of the triangle. Therefore,
these solid-contact triangles are marked as Neumann triangles. The
rest of the triangles in the liquid-air boundary are marked as Dirich-
let triangles, because the normal derivative of pressure on them
is unknown. Similarly, the vertices in the liquid-air boundary, and
those in the liquid-air-solid triple junction have known pressure
values, and are marked as Dirichlet vertices. The remaining vertices
that lie in the interior of the liquid-solid boundary are marked as
Neumann vertices.
In summary, the double layer charges (pressure) on Dirichlet

vertices are given by gravity, surface tension, magnetic forces (see
Eq. (26)). The single layer charges (normal derivatives) on Neu-
mann triangles are determined by solid velocities (see Eq. (29)). The
unknown double layer charges (pressure) are associated with the
Neumann vertices in the liquid-solid interface, and unknown single
layer charges (normal derivatives) are associated with the Dirichlet
triangles in the liquid-air interface. After we solve the linear equa-
tion of the Galerkin BEM by preconditioned GMRES (Section 4.4.3),
we obtain the complete double layer charges on all vertices, and

Table 1. The table provides an overview of the numerical examples presented
in this work. Max. Nv denotes the number of vertices, ∆t the time step size
measured in seconds, χ the magnetic susceptibility, and σ the surface
tension measured in N/m. Min. E.L. denotes the minimum edge length
defined in meters as a measure for the mesh resolution. Max. R.T. measured
in seconds denotes the maximum run time per frame (i.e. one cycle of
Algorithm 1). The damping parameter listed below is the portion of the
smoothed velocity field η ∈ [0, 1] in Eq. (10). The damping parameter (D.)
is not set up in a way that damping eliminates instabilities, but rather in a
way that the simulation quickly reaches the equilibrium. A constant density
of 1 300 kg/m3 is used in all simulations.

Scene Max. Nv Steps ∆t /s χ σ /(N/m) Min. E.L./m Max. R.T./s D.

5.1: Sphere Test 41k – – 1.0 0.00 2.5 · 10−4 14.4 0.0
5.2: Wavenumber Test 22k 2 400 5 · 10−4 1.0 [0.02, 0.07] 6.0 · 10−4 22.0 0.7
5.3: Ablation Study 6.6k 2 000 3 · 10−4 1.0 0.045 7.8 · 10−4 5.8 0.1
5.4: Resolution Test 8.7k 2 000 3 · 10−4 1.0 0.045 7.0 · 10−4 8.1 0.1
5.5: Rotating Magnet 5.6k 5 000 5 · 10−4 2.0 0.02 8.0 · 10−4 5.8 0.7
5.6: Labyrinth Pattern 28k 2 200 5 · 10−4 1.5 0.02 5.0 · 10−4 45.0 0.5
5.7: Climbing Ferrofluid 8.2k 7 080 3 · 10−4 1.0 0.036 6.5 · 10−4 10.0 0.5

complete single layer charges on all triangles. Once we get all the
linear double layer charges and constant single layer charges for
each triangle, we can use the analytical solution (see Eq. (24) in this
work for the gradient of the double layer potential and Eq. (4) in the
work of Eibert and Hansen [1995] for the single layer potential) to
calculate their gradient at the interior limit gradients at the quad-
rature points on each triangle. Finally we convert the gradient on
quadrature points to the gradient on vertices by the face quadrature
to vertex process described in Section 4.2.2. The gradient evaluation
pipeline resembles what we described in Section 4.4.4.

5 NUMERICAL EXAMPLES
Based on the methodology described in the previous section, we
implemented our surface-only ferrofluid solver according to Algo-
rithm 1 using C++/CUDA. In this section, we present a variety of
numerical examples evaluating our solver with respect to accuracy,
capability and performance. Table 1 provides an overview of the
scenes presented throughout this section including the correspond-
ing physical parameters and computation time.

5.1 Accuracy of the Magnetic Solver
To validate the correctness of the magnetic solver, we compare the
analytical solution of a sphere filled with linearly magnetizable mate-
rial placed in a homogeneous external magnetic field. We gradually
refine the mesh to test the convergence of the boundary element
solver. We set the external magnetic field to H ext = (0, 0, 1)⊺ . For a
homogeneous sphere with susceptibility χ , the theoretical magnetic
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Fig. 10. Relative RMS error of the spheremagnetization calculated by double
layer and single layer formulations vs. number of triangles discretizing the
sphere. Both axes are logarithmically scaled. The reference line has a slope
of −0.5. For each vertex the difference to the reference solution is calculated
and the norm of the difference divided by the reference solution defines the
error.

Fig. 11. The pattern used in our wavenumber analysis. Surface tension of
σ = 0.03 N/m, density of ρ = 1300 kg/m3, gravity of д = 9.81 m/s2, and
a disk diameter of D = 8 cm are applied. The height contour distance is
0.5 mm.

field inside the sphere is a constant field (0, 0, 3/(3 + χ ))⊺ . In Fig-
ure 10, we can see that the magnetic field computed by the double
layer potential formula adopted in this work and the magnetic field
computed with the single layer formula converge to the analytical
solution. Moreover the double layer is more accurate given the same
amount of triangles.

5.2 Surface Tension and Magnetic Field Strength
The influence of surface tension and field strength is systemati-
cally investigated. Fluids of different surface tension are placed in
a vertical homogeneous magnetic field with varying strengths; see
Figure 13. The surface tension coefficients are 0.02 N/m, 0.025 N/m,
0.03 N/m, and 0.05 N/m (from bottom to top); the density is ρ =
1300 kg/m3 and the gravity д = 9.81 m/s2. Given these parameters
we can calculate the wavenumber of the pattern as k =

√
ρд/σ and

the corresponding wavelength as λ = 2π/k (see Rosensweig [1987],
Eq. (45)). From bottom to top, the theoretical wavelengths are 0.79 cm,
0.88 cm, 0.96 cm, and 1.24 cm. Four white marks illustrating the
theoretical wavelengths are shown in the plot providing a visual
comparison. Clearly, our simulation matches the theoretical wave-
length. Although the previous work of Huang et al. [2019] also
shows a similar trend in its analysis, there is no way to compare
their result to the theoretical results because their surface tension
parameter does not correspond to a physical parameter.
A higher surface tension coefficient results in a higher critical

external magnetic field strength beyond which the pattern starts to
form. This is also reflected in the first two columns on the left side of
Figure 13. The quantitative correctness of our solver is analyzed in
terms of the dominant wavenumber of the pattern in the Rosensweig
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Fig. 12. Dominant wavenumber k of the pattern vs. surface tension σ . The
ferrofluid is placed in a homogeneous magnetic field. The red curve shows
the theoretical prediction of the dominant wavenumber k (σ ) =

√
ρд/σ

with ρ = 1300 kg/m3 and д = 9.81 m/s2. The blue dots indicate dominant
wavenumbers in the Fourier domain of our simulation results.
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Fig. 13. The pattern of the ferrofluid’s surface for different surface tensions
and field strengths. The ferrofluid has a density of ρ = 1300 kg/m3. From
bottom to top, the surface tension σ is 0.02 N/m, 0.025 N/m, 0.03 N/m, and
0.05 N/m. From left to right, the field strength Hext is 13 kA/m, 14 kA/m,
15 kA/m, and 16 kA/m. The white marks on the right illustrate the theoretical
wavelength predicted by the analytical formula λ(σ ) = 2π /

√
ρд/σ with

д = 9.81 m/s2.

instability (i.e. the surface forms a regular pattern of peaks and val-
leys). We place ferrofluids of different surface tension parameters σ
in a cylindrical container with a diameter of 8 cm within a homoge-
neous magnetic field. We measure the dominant wavenumber of the
pattern by transforming the height field to the Fourier domain. The
measured result is plotted in Figure 12. Our result agrees well with
the theoretical prediction k =

√
ρд/σ (Rosensweig [1987], Eq. (45)).

5.3 Ablation Study
In this section, we compare the importance of the different compo-
nents of our approach. The complete algorithm uses the full (i.e. both,
the tangential and normal component of the re-constructed velocity
field) Helmholtz decompositionwith analytical integration, Galerkin
BEM pressure solver, double-layer potential formulation for themag-
netic field problem, and the semi-analytical approach to calculate
the matrix in the Galerkin BEM. We show that the most important
component is the double-layer formulation and the semi-analytical
approach to evaluate the matrix. Detailed comparisons providing an
overview of the critical components of our approach can be found
in Figures 14, 15, 16, and 17.

5.3.1 Partial vs. Full Helmholtz Decomposition. In the work of Da
et al. [2016], the tangential velocity on the mesh is kept in the

ACM Trans. Graph., Vol. 39, No. 6, Article 174. Publication date: December 2020.



174:12 • Huang, L. and Michels, D. L.

(a) Partial + Duffy. (b) Partial + Analytical. (c) Full + Analytical.

Fig. 14. Two partial Helmholtz decompositions (a) and (b) are compared
vs. the full Helmholtz decomposition (c) using analytical integration; (a) uses
the quadrature rules with Duffy transform, (b) uses analytical integration.
While the partial Helmholtz decomposition just has a minor influence on
the static shape, during the dynamical simulation, it induces more velocity
fluctuations and re-meshing operations.

(a) Collocation BEM. (b) Galerkin BEM.

Fig. 15. In (a), a collocation BEM is used to solve the mixed boundary value
problem for the pressure while in (b), a Galerkin BEM is employed. The
collocation method dissipates more energy despite similarly looking static
shapes.

Helmholtz decomposition step.We denote this as a partial Helmholtz
decomposition. In Figure 14, we compare the complete algorithm
against the partial Helmholtz decomposition using quadrature in-
tegration with Duffy transform and analytical integration. Such a
partial Helmholtz decomposition leads to noisy simulations, but the
shapes of the spikes are not much affected.

The noise could originate from less accurate quadrature integra-
tion [Da et al. 2016], or from the unattended tangential component
of the velocity. The analytical integration helps to reduce the noise,
especially when no artificial damping is added (not shown in Figure
14). However, when some artificial damping is included, it does not
outperform the quadrature integration technique, and the noise is
still perceptible compared to the full Helmholtz decomposition with
analytical integration.

5.3.2 Collocation / Galerkin BEM Pressure Solver. The collocation
BEM in the pressure solver does not show a noisy result as illus-
trated in Figure 15. However, during the simulation, energy quickly
decreases. In contrast, the Galerkin BEM can preserve the energy
satisfying the inviscid ferrofluid assumption.
5.3.3 Single vs. Double Layer Potential Formulation. An alternative
formulation for the magnetic field problem was proposed by And-
jelic et al. [2011] called a single-layer potential formulation. We
tried this formulation, but the numerical error of the magnetic part
is too large as shown in Figure 16. We observe little performance ad-
vantage in our single layer implementation as argued by Andjelic et
al. [2011]. Hence, in our case the double layer potential formulation
is more beneficial compared to the single layer formulation.
5.3.4 Vertex / Face Magnetic Pressure Calculation. In our approach,
the magnetic pressure is first evaluated at the quadrature point on

(a) Single Layer. (b) Double Layer.

Fig. 16. Single (a) and double (b) layer potential formulations are used to
compute the magnetic field. It can be clearly observed that the single layer
formulation is not sufficient to generate correct shapes.

(a) Vertex. (b) Face to Vertex.

Fig. 17. In (a), we convert the magnetic field from face quadrature positions
to vertex positions and evaluate the magnetic pressure using vertex normals.
In (b), we evaluate the magnetic pressure on quadrature points and con-
vert the pressure to vertex values. The last frame before the vertex normal
approach crashes is shown.

each face using the face normal. An alternative approach is to use
vertex normals and the magnetic field strength at vertex positions.
We observed that the vertex normal approach (see Figure 17) leads
to inaccurate magnetic pressure and crashes the simulation.

5.3.5 Symmetric Triangle Quadrature / Semi-analytical Correction.
The solution of the double layer potential problem requires the
application of a matrix K̂h . Each entry in this matrix consists of
an inner integral and an outer integral over different triangles. To
show the sensitivity of our algorithm with respect to the accuracy
of the integration techniques, we change the number of quadrature
points for the inner integral. In the three examples, three, seven and
sixteen quadrature points [Zhang et al. 2009] are used respectively
to evaluate the inner integral of the K̂h matrix. We evaluate the
outer integral using a three point quadrature rule, and evaluate the
gradient using analytical integration. All three simulations crashed
after three, five, eighteen steps respectively. One might argue that
the failure is due to the mismatch of the integration methods be-
tween solving the double layer charges and evaluating the gradient
of it. The fact is that even if we use the three point quadrature rule
for both, the evaluation of K̂h and the evaluation of the double layer
charges, it still crashes after three steps.

5.4 Resolution Test
We analyze the importance of themesh resolution on the simulations
as shown in Figure 18. The minimum edge length is increased to
reduce the resolution. A visible loss of quality is observed if no
sufficient amount of triangles is available.
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(a) 0.7 mm, 6.7k. (b) 1 mm, 3.3k. (c) 1.3 mm, 2.1k.

Fig. 18. Simulations with different resolutions and corresponding triangle
numbers. From left to right we set the minimum edge length to be 0.7 mm,
1.0 mm, 1.3 mm corresponding to 6.7k, 3.3k, 2.1k triangles respectively.
Naturally, a correct simulation requires a sufficiently high resolution to
capture the spikes’ geometry.

Fig. 19. The fluid is approached by an external magnet which leads to the
formation of spikes. The orientation of the magnet is relevant as demon-
strated here.

5.5 Rotating Magnet Experiment
We approach the fluid with a cubic magnet from below leading to
the formation of the characteristic spikes. We furthermore simulate
the impact of the magnet’s orientation on the formation of spikes.
If the magnet is rotated in a way that its field lines are arranged in
parallel to the fluid’s surface, naturally no spikes can be generated.
Our simulation reproduces this effect as demonstrated in Figure 19.

5.6 Labyrinth Pattern
Ferrofluids exhibit other nonlinear patterns beyond their familiar
spikes. When the fluid is located in between a narrow space formed
by two parallel planes (in a so-called Hele-Shaw cell [Saffman 1986])
and is exposed to a magnetic field perpendicular to the planes, a
labyrinth structure is generated [Rosensweig et al. 1983]. This effect
can successfully be reproduced with our approach. With increasing
magnetic field strength, the labyrinth pattern develops as shown
in Figure 2. The gap between the two parallel planes is 2 mm. The
visible expansion of the fluid is an artifact associated with a strong
smooth damping coefficient η = 0.5. The artificially smoothed veloc-
ity after the Helmholtz decomposition is not strictly divergence-free
introducing volume errors. Since the surface-only fluid concept does
not include viscosity, the volume error induced by artificial smooth
damping seems inevitable unless an extra Helmholtz decomposition
step is applied to enforce incompressibility again.

5.7 Climbing Ferrofluid
As a more complex example, we use multiple magnets to control
the movement of ferrofluids. We position the fluid in a closed space
between the floor and the ceiling. Moreover, two cylindrical elec-
tromagnets are located below the floor and above the ceiling, and

change their relative strength to control the fluid. Initially, the fluid
is located on the ground. We increase the strength of the upper
magnet and attract the ferrofluid to the top forming a bridge be-
tween the floor and the ceiling finally getting fully attracted to the
ceiling. Later on, we turn on the lower electromagnet to attract the
ferrofluid down to the floor and reduce the strength of the upper
electromagnet until the fluid rests completely on the floor. This
simulation is shown in Figures 1 and 20.

5.8 Effectiveness of the Preconditioner
We analyze the effectiveness of the preconditioner (see Section 4.4.3)
in the context of the magnetization problem (Section 4.4.2) as shown
in Figure 21 and in the context of the pressure solver (see Section
4.5) as shown in Figure 22. We test our solver using the equilibrium
shape of the wavenumber test withσ = 0.04 andHext = 1.5·104 A/m
because the diverse triangle sizes and large numbers of vertices lead
to challenging ill-conditioned system. We solve the system allowing
different maximum iterations and measure the computation time.
The original system converges very slowly. If we use the inverse
element area (support area for ψ 0, one third of support area for
ψ 1, see Figure 4) as a preconditioner, the residuals are reduced
significantly faster. The diagonal preconditioner [Ainsworth et al.
1999; Graham and McLean 2006] converges faster compared to the
area preconditioner and the partial-LHS preconditioner. Since the
partial-LHS is not solved exactly, it introduces errors to the final
solution, see Figure 22.

5.9 Runtime Analysis
The performance of our simulator is analyzed by running the same
fraction of the reference ablation study (Section 5.3) with different
mesh resolutions as presented in Figure 23. The runtime of our
Galerkin BEM magnetic solver and pressure projection is compa-
rable to the surface tracking procedure [Da et al. 2014]. Although
we implemented a naive summation with quadratic complexity, the
GPU resources are not fully utilized unless the problem size is suf-
ficiently large. The runtime scales linearly with respect to vertex
numbers below 48k. All of our test cases are within this linear range.

6 DISCUSSION
Our surface-only ferrofluid solver is able to simulate a broad range of
the characteristic dynamics of ferrofluids including the Rosensweig
instability and labyrinth patterns [Rosensweig et al. 1983]. The
linear magnetization assumption allows us to only use the surface
to solve the magnetization problem, whereas the incompressibility
assumption allows us to apply the magnetic forces as the gradient
of the magnetic pressure solved with a BEM that only rely on the
surface mesh as well.

Since only the information on the surface of the fluid is used, this
solver is advantageous compared to volumemethods for a large fluid
volume. The boundary mesh can accurately capture the interface
of fluid and air making it convenient to use a physically accurate
surface tension model. The magnetic solver employing the Galerkin
BEM has proven accuracy making our solver a strong candidate to
study the dynamic free-surface flow of ferrofluids at large-scale. The
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Fig. 20. Two electromagnets, one at the top and another one at the bottom, are employed controlling the movement of the fluid. First, the strength of the
upper magnet is increased attracting the fluid to the top. Then, the strength of the lower magnet is increased while gradually reducing the strength of the
upper magnet so that the fluid gets finally attracted to the bottom. A time sequence is shown here (left: photorealistically rendered; right: mesh view).
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Fig. 21. Normalized residual vs. computation time using the Galerkin BEM
magnetic field solver (see Section 4.4.2). A: inverse element area precon-
ditioner. D: diagonal preconditioner. P: partial-LHS assembled with near
elements preconditioner. I: reference identity preconditioner. Please note,
that the partial-LHS preconditioner shows a steep slope but the error is
larger. All solvers have around 0.2 s overhead.
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Fig. 22. Normalized residual vs. computation time using the Galerkin BEM
pressure solver (see Section 4.5). A: inverse element area preconditioner. D:
diagonal preconditioner. P: partial-LHS preconditioner. I: reference iden-
tity preconditioner. The partial-LHS preconditioner shows a large error
due to its incomplete solve. The fastest convergence shows the diagonal
preconditioner.

performance of the whole system is well optimized and the runtime
of the magnetic part along with the pressure part is comparable to
the surface-tracking procedure [Da et al. 2014].

6.1 State-of-the-Art Comparison
Existing methods simulating ferrofluids include Lagrangian [Huang
et al. 2019] and Eulerian approaches [Ni et al. 2020]. Both meth-
ods solve equations for volume unknowns. Our BEM approach
solves equations for surface unknowns. We discuss their differences
in terms of accuracy and computation time. In terms of accuracy,
Huang et al. [2019] approximate the ferrofluid with uniformly dis-
tributed radial basis functions. As a result, the ferrofluid-air interface
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Fig. 23. Runtime analysis and decomposition into the different parts
(i.e. Helmholtz decomposition, magnetic part, pressure part, and remeshing
part) for different problem sizes. The number of vertices is shown of the
vertical axis. The magnetic part includes all steps to turn vertex positions
into magnetic pressures. The pressure part contains the whole projection
step using the Galerkin BEM. The remeshing part includes a single mesh
advection step, and five cycles of topology changes and mesh improvements.
The computation time is measured in seconds for one simulation step with
no sub-steps. Remeshing is running sequentially on a single thread. The
near-field high-precision K̂h (see Section 4.4.2) is assembled on the CPU
with two 12-core Intel® E5-2687w-v4 @3.0 GHz. All other parts are running
on an NVIDIA® GeForce® RTX2080Ti.

is a smooth transition, instead of a sharp transition in reality. Ni
et al. [2020] need to discretize both, the fluid and the air using a
Cartesian grid. They need to approximate the sharp fluid-air inter-
face with a smooth level-set function. In case a vanishing boundary
is required, the whole domain must be sufficiently large to avoid
unpleasant effects at the boundary. Our BEM approach can cap-
ture the sharp fluid-air interface and naturally support vanishing
boundaries.

In terms of computation time, we analyze the magnetic part con-
ceptually and experimentally. The BEM solves equations for less
unknowns, but each vertex unknown is associated with on average
six quadrature points. Solving the system requires iterative pair-wise
interactions between all quadrature points. Our current naive im-
plementation performs well for small problems, but will fail in large
cases. The Lagrangian method [Huang et al. 2019] solves equations
for substantially more volume unknowns for the same resolution,
and also requires iterative pair-wise interactions between all parti-
cles. Hence, a naive implementation of Huang et al. is likely to be
inefficient. Their fast multipole implementation is necessary. The
Eulerian method [Ni et al. 2020] involves more volume unknowns
to the work of Huang et al. because the air needs to be discretized.
They solve Poisson’s problem on a Cartesian grid, which can benefit
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Fig. 24. Computation time to solve the magnetic part per unknown vs. the
number of unknowns of our BEM with naive summation, SPH [Huang et al.
2019] with naive summation and fast multipole method (FMM). Both naive
summation methods have stable costs per number of unknowns before the
thousands of GPU cores are fully occupied. After the GPU is fully utilized,
the cost increases. BEM costs twice as much as SPH for the same number of
unknowns. The cost of the FMM is generally stable for large problem sizes.
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Fig. 25. Computation time to solve the magnetic part vs. the radii of the
sphere with a fixed space resolution (1 mm). The BEM is most effective for
this test because of the advantage of less equation sizes compared to the
volume approach, although the cost of each unknown is slightly higher (see
Figure 24).

from the existing Eulerian fluid simulation framework. Conceptu-
ally, for small and intermediate scenes, the method of Ni et al. [2020]
may be the most promising one.

Thework of Ni et al. is quite recent, and no source code is available.
Hence, we compare the result of Huang et al. [2019] to our approach
using their released source code. We test both algorithms in a sphere
magnetization test (Section 5.1) with identical spatial resolution
(1 mm) but with increasing radii from 5 mm to 12 cm. For the largest
radius, the number of unknowns using the BEM is 130K, while the
number using SPH is 7.3M. Since their ratio depend on the geometry,
a more representative quantity is the cost of time per number of
unknowns. If the cost per unknown is similar, then a smaller number
of unknowns would lead to a more efficient algorithm. We plot
the computation time divided by the problem size in Figure 24.
It shows that our method is more expensive per unknown, but
still comparable to SPH [Huang et al. 2019]. Since the BEM solves
much less unknowns, it may outperform SPH. In the ideal spherical
case, our method outperforms SPH [Huang et al. 2019] with FMM
integrated; see Figure 25. In the future, FMM can be incorporated
within our method to reduce the cost per unknown at large scale,
potentially enabling more speed-up.
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Fig. 26. Illustration of the magnetic induction vs. the spike amplitudes
(i.e. the distance between the peak and valley of the pattern) in the center
region of a disk. Real measurements [Gollwitzer et al. 2007] are compared
to the results of our simulations.

6.2 Limitations
Our approach can accurately simulate complex patterns which occur
at the ferrofluids’ surfaces. Next to qualitative accuracy of the whole
scene, the correct wavelengths can be reproduced quantitatively
accurate. However, the surface-only concept comes with limitations
in two aspects. First, it neglects viscosity and the presence of vortices
within the fluid’s volume. Second, BEM solvers for themagnetization
problem can naturally only handle linearly magnetizable materials.
As a consequence, the influence of the external magnetic field on
the height of the spikes is quantitatively less accurate as shown in
Figure 26. Although we use the exact physical parameters of the
fluid reported by Gollwitzer et al. [2007] for this comparison, we
can only qualitatively match their measurements. This is caused by
the linear magnetization model in our work approximating their
nonlinear model (χ = 1). Taking non-linear magnetic responses of
real ferrofluids into account would require volume discretization.
Another problem is the handling of complex solid geometries. This is
associated with the surface-only fluid solver and the surface tracking
program. This necessitates further developments with respect to
solid geometry interaction, multi-threading, etc.

6.3 Future Work
The current solver only implements naive summations. For larger
problem sizes, the FMM [Beatson andGreengard 1997] or the particle-
particle particle-mesh (P3M) method [Zhang and Bridson 2014]
could be incorporated to accelerate the summation. Limited by the
explicit time integrator, our solver must use relatively small time
steps. A possible improvement could be to incorporate implicit inte-
gration involving surface tension and magnetic energy.

Moreover, we would like to point out that the way we incorporate
magnetic effects into fluids is not limited to a surface-only approach
openingmultiple avenues for future work. It is possible to extract the
triangle meshes from the free-surface of an Eulerian fluid solver or a
mixed Eulerian-Lagrangian fluid solver, and calculate the magnetic
pressure everywhere on the mesh. The magnetic force and the
surface tension force can then be applied by adding them to the
Dirichlet boundary condition on the fluid-air surface.
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A NUMERICAL CORNER CASES
The analytical integration of Green’s functionG and its gradient ∇G
with a linear or constant weight function over a triangle is described
in the literature [Eibert and Hansen 1995; Graglia 1993]. The results
are valid for evaluation points within R3. However, corner cases can
cause numerical instabilities (e.g. due to divisions by small numbers).
In this work, these instabilities are associated with the auxiliary
f2i function defined in Eq. (11) in Graglia [1993] and βi defined in
Eq. (13). The subscript i ∈ {1, 2, 3} indicates the associated vertex
indices in a triangle. The definition of f2i and βi is given by
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For the definition of the variables, we refer to Graglia [1993].
Large numerical errors can happen when R−i + s

−
i = 0 and R0

i = 0
respectively in two functions. To handle these corner cases in f2i ,
we expand it around the singular point where Ri + si ≈ 0 by using
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(33)

To eliminate divisions by zero when computing βi we add a small
positive number ε := 10−16 to the denominators in Eq. (33).
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