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Fig. 1. Our approach can accurately reproduce the observation that real ferrofluid is literally climbing up a steel helix placed above a strong electromagnet.
This figure shows the final results of our simulation of this scenario rendered from di�erent viewpoints.

We present an approach to the accurate and e�cient large-scale simulation
of the complex dynamics of ferro�uids based on physical principles. Fer-
ro�uids are liquids containing magnetic particles that react to an external
magnetic �eld without solidifying. In this contribution, we employ smooth
magnets to simulate ferro�uids in contrast to previous methods based on the
�nite element method or point magnets. We solve the magnetization using
the analytical solution of the smooth magnets’ �eld, and derive the bounded
magnetic force formulas addressing particle penetration. We integrate the
magnetic �eld and force evaluations into the fast multipole method allowing
for e�cient large-scale simulations of ferro�uids. The presented simulations
are well reproducible since our approach can be easily incorporated into a
framework implementing a Fast Multipole Method and a Smoothed Particle
Hydrodynamics �uid solver with surface tension. We provide a detailed
analysis of our approach and validate our results against real wet lab experi-
ments. This work can potentially open the door for a deeper understanding
of ferro�uids and for the identi�cation of new areas of applications of these
materials.
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1 INTRODUCTION
Ferro�uids were invented in the early 1960s by NASA scientists to
pump fuel into spacecrafts in low gravity environments without
mechanical actions. Today, these �uids are mostly known to the
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public for its peculiar behavior when interacting with magnetic
�elds. Because of the interesting geometric structure, they arewidely
used in artwork (as, e.g., in the SIGGRAPH Art Gallery [Kodama
2008]), science exhibitions, and in several advertisements. Due to the
complexity of the movements of their spikes, it becomes impossible
for an artist to create a lively animation by intuition. A fast and
accurate ferro�uid simulator can not only be used for animation,
but also to explore, and perhaps better understand, the interplay
between the magnetic �eld, the geometry of the external object,
and the resulting surface shape/topology of the ferro�uid. However,
realistic simulations of the ferro�uid dynamics are not yet available.
In this contribution, for the �rst time, we achieved the level of
realism to bring its fascination from reality to the virtual world.
With such a simulation tool at hand, we can further design the
magnetic �eld and external objects in the virtual world to create the
desired shapes in reality.
Next to their artistic applications, ferro�uids are employed in

di�erent scenarios described in the literature [Nochetto et al. 2016a;
Raj et al. 1995] ranging from applications in acoustics, instrumen-
tation, lubrication, vacuum technology, vibration damping [Miwa
et al. 2003], to radar absorbing materials [Vinoy and Jha 1996]. Sev-
eral applications are also touching the �eld of visual computing,
for example, ferro�uids are used for magnetic resonance imaging
contrast enhancement and the construction of adaptive deformable
mirrors [Brousseau et al. 2007]. Additional applications can be
found in the �eld of micro- and nanoelectronics [Hartshorne et al.
2004; Zahn 2001].

The interesting dynamics of ferro�uids are caused by the interplay
of an external magnetic �eld and the surface tension, forming a
pattern of characteristic spikes. Figure 2 illustrates the in�uence of
the magnetic �eld strength and surface tension on the shape of the
spikes: a strong surface tension force smooths the contour, while
a strong �eld strength increases the height of the spikes. These
e�ects are further coupled with �uid motion �nally leading to a
highly complex dynamical behavior. Given this degree of complexity,
the large-scale numerical simulation of ferro�uids can potentially
open the door for a deeper understanding of ferro�uids and for the
identi�cation of new areas of applications of these materials.
In this contribution, we aim for the large-scale simulation of

ferro�uid dynamics. The simulation of magnetism-based e�ects is
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an active subject of researchwithin the visual computing community.
In previous work, the authors are mostly focusing on magnetized
rigid bodies, e.g., Thomaszewski et al. [2008] simulated magnetic
rigid body interactions by subdividing a rigid body into small cells,
and magnetize each cell only using external �elds to calculate the
net force. The recent work of Kim et al. [2018] addresses the dynamic
magnetization process of the material improving the quality and
stability of such simulations. However, both models may lead to
instabilities when particles come close.

Moreover, in the absence of a magnetic �eld, our simulation of a
ferro�uid is reduced to a Smoothed Particle Hydrodynamics (SPH)
�uid simulation with surface tension. Such large-scale �uid simula-
tions are studied in detail within the computer graphics community.

Ourmagnetic forcemodel is di�erent from previous particle based
methods in the graphics and physics literature since we use a smooth
magnet instead of a point dipole magnet, for each particle. This
eliminates the magnetic �eld singularities at the dipole positions,
and accounts for the self-generated magnetic �eld when considering
the magnetization process. Additionally, our magnetic force model
can accurately calculate the forces, in particular if two particles
overlap. Our forces are bounded in contrast to point magnet forces.
Such property allows for the natural extension to other magnetizable
continuum such as magnetic slime and paste by changing the �uid
solver to a viscous material solver.
Our speci�c technical contributions are as follows. We devise a

novel approach to robustly calculate the magnetic �eld generated
by multiple magnetizable bodies exposed to an external magnetic
�eld. Moreover, we present a magnetic force model between magne-
tized particles that enables the accurate formation of the ferro�uids’
spikes. Finally, we integrate the Fast Multipole Method (FMM) into
the magnetic �eld and force calculations enabling e�cient and ac-
curate large-scale simulations of ferro�uids. Our simulations are
well reproducible since our approach can be easily incorporated
into a framework implementing a FMM and a SPH �uid solver with
surface tension. To further ensure reproducibility, we disclose all
relevant details of our implementation and provide all physical and
numerical parameters. Moreover, we present a detailed derivation
of our method in the supplemental material. We provide a detailed
analysis of our approach and validate the results of our simulations
against data obtained in real experiments carried out in the wet lab.

2 RELATED WORK
As in the case of regular, i.e., non-magnetizable �uids, the dynam-
ics of ferro�uids and its numerical simulation have been studied
in di�erent scienti�c communities including applied mathematics,
computational physics (in particular, in computational �uid dynam-
ics (CFD)), as well as in visual computing.

2.1 Ferrofluids Simulation
Within the scope of visual computing, Ishikawa et al. [2013] em-
ployed an SPH approach to simulate the �uid’s motion and treated
each particle as a perfect magnetic dipole. After calculating the
magnetic moment for each particle, a procedural method is applied
to elevate the surface according to the magnetic strength to gener-
ate the spikes. Ishikawa et al. [2012] seeds the �uid’s surface with

Fig. 2. If a magnetic field is applied, the ferrofluid forms its characteristic
spikes. This is illustrated here for di�erent surface tension andmagnetic field
strengths using a vertical homogeneous magnetic field. A strong surface
tension force smooths the contour while a strong magnetic field strength
increases the height of the spikes.

particles and generate dynamical spikes by moving the particles
according to the strength of the magnetic �eld. Both methods are
not based on self-evident physical laws leading to a limited physi-
cal accuracy. This results in signi�cant shortcomings including an
unnatural look of the �nal shapes of the spikes.
Within the computational physics communities, Yoshikawa et

al. [2010] employed the moving particle semi-implicit (MPS) method
for incompressible free surface �ows and reused the particles as
nodes in a �nite element method (FEM) solver for computing the
electromagnetic interactions. They were able to produce only one
spike purely based on physical principles without additional geomet-
ric modeling. However, the ever-changing mesh topology impedes
an e�cient simulation. Mitsufuji et al. [2016] also achieved the for-
mation of a single bulge rather than multiple spikes using a particle
method for simulating the �uid’s dynamics. They formulated the
magnetization problem as a system of linear equations as done in
our work presented in this contribution. There are additional mesh-
based examples [Cao and Ding 2014; Gollwitzer et al. 2007; Lavrova
et al. 2006, 2008] successfully generating multiple spikes in the pres-
ence of an external �eld. They alternately solve the magnetization
of the �uid given the surface pro�le and use the magnetic �eld
to update the deformation of the surface pro�le. However, their
formation process of spikes is an evolving sequence towards the
equilibrium shape rather than a dynamic system advancing in time.
Such mesh-based methods also su�er from topology changes in
dynamical simulations.

Within the appliedmathematics disciplines, Nochetto et al. [2016a]
proposed a di�use interface model for two-phase ferro�uid �ows
which is representative for the usual approach taken in this �eld:
their solution is given as a function of time rather than iterating
towards equilibrium shapes as done in most of the work presented
in the computational physics communities. The authors provide
a comprehensive analysis on the stability of their scheme and the
convergence of the solution. Their model is su�cient to produce
many spikes in a two dimensional example without making any non-
physical assumption about the geometric structure of the spikes. A
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FEM approach is used in order to solve their set of partial di�eren-
tial equations. Nochetto et al. [2016b] simulate the ferro�uid using
Rosensweig’s equation [1997]. However, it is only applied to one
phase, and as a consequence no spikes can be formed.

2.2 Fluid Solvers
Our approach for the simulation of ferro�uids requires the uti-
lization of a particle-based �uid solver. For this, we use the SPH
solver described by Adami et al. [2012]. The authors provide a ver-
satile way to handle complex boundaries easily. Its accuracy and
e�ciency is su�cient to prove that our ferro�uid force model is
qualitatively accurate. In essence, it is still a weakly-compressible
SPH (WCSPH) solver. We would like to mention, that there are more
e�cient SPH solvers available, e.g., DFSPH [Bender and Koschier
2017], IISPH [Ihmsen et al. 2014a], and PCISPH [Solenthaler and
Pajarola 2009]. Some other aspects of SPH methods can also be
improved, e.g., viscosity forces [Peer et al. 2015; Peer and Teschner
2017], boundary handling [Akinci et al. 2012; Band et al. 2018a,b],
and data structures [Ihmsen et al. 2011]. Recent advances in CFD
include particle shifting [Lind et al. 2012; Sun et al. 2017] and density
di�usion [Antuono et al. 2012]. The possible improvement list is
far from being exhaustive, and we refer the reader to surveys in
computer graphics [Ihmsen et al. 2014b; Koschier et al. 2019], in
mesh-free methods [Belytschko et al. 1996], and in CFD [Monaghan
1992, 2012] for further information.

We believe in principle that next to SPH, particle-based �uid
solvers handling incompressibility should also work with our ap-
proach; see, e.g., [Fu et al. 2017; Hu et al. 2018; Jiang et al. 2017;
Zheng et al. 2015; Zhu and Bridson 2005].
To ensure the formation of the accurate shapes of the spikes,

surface tension has to be incorporated into the simulation. In this re-
gard, a few surface tension models are available: Müller et al. [2003]
incorporated surface tension in their SPH framework using the
Laplacian of a so-called color �eld, which is equal to one inside
the �uid and zero outside. He et al. [2014] used the surface energy
to calculate the surface tension based on the gradient of the color
�eld. These methods are making use of the geometry of the liq-
uid. In contrast, other authors [Akinci et al. 2013; Tartakovsky and
Meakin 2005; Yang et al. 2017] employ a pair-wise force between
particles, handling the surface tension in a microscopic way: SPH
particles attract and repel each other depending on their relative
distances, and particles on the surface are exposed to imbalanced
forces towards the inside, which become the surface tension forces.
In this contribution, we incorporate the surface tension model as
described by Yang et al. [2017] which is based on pair-wise forces
with additional anisotropic �ltering for poor-sampled regions.

3 FERROFLUID DYNAMICS
The formation of spikes in ferro�uids can be explained by two facts.
First, magnetization: magnetizable objects concentrate magnetic
�eld lines around them. Second, magnetic forces: a small magnet
tends to be aligned with the magnetic �ux density, and is attracted
to regions with denser �eld lines, for example to the center region
as illustrated in Figure 3.

Fig. 3. Illustration of the field lines of a constant vertical magnetic field un-
der the influence of cubes with di�erent susceptibility � . The susceptibility
set to � = 0.5, 5, 50, 500 (from le� to right). Typical ferrofluids have a sus-
ceptibility between 1 and 5 [Rosensweig 1987]. The field lines are generated
by advancing tracing particles along the magnetic flux density direction B .
Please note that four independent fields are plo�ed.

A ferro�uid is a deformable and paramagnetic continuum. It is
non-magnetic in the absence of an external magnetic �eld since
the total magnetic �eld caused by the randomly moving magnetic
nanoparticles is canceled out. If an external �eld is present, these
magnetic nanoparticles are still moving randomly but rotate statisti-
cally to a dominant direction within a short relaxation time, and the
�uid becomes magnetized concentrating the �eld lines. Whenever
there is a small bump on the ferro�uid surface caused by a minor
perturbation, it bends the �eld lines and attracts the molecules in its
neighborhood forming a larger bump, eventually becoming a spike.
The growth of such a spike is limited by gravity, external magnetic
forces, and surface tension.
Our approach for the simulation of ferro�uids consists of two

components: a �uid solver incorporating surface tension and a mag-
netic force solver. We discretize the �uid as overlapping smooth
magnetizable particles. The �uid solver with surface tension and
magnetic forces evolves the motion of these particles .

3.1 Magnetization
We derive the magnetization equation from Maxwell’s equations,
then use the smooth magnets concept to discretize and solve the
equation. We use a bold letter for a vector (tensor), and its thin
version with superscripts for its components in its canonical coor-
dinates. We add a tilde symbol to denote the same vector (tensor)
in other coordinates (m̃,m). We use the subscript to identify the
associated index of a particle.

The relaxation time is much smaller than our numerical integra-
tion step sizes, so that the magnetization process achieves the equi-
librium instantly. The strength of a magnetized object is described
by the magnetization �eldM = dm/dV , which is the density of the
magnetic momentm (one can naively equatem to tiny magnets).
Here we use a simpli�ed model and assume a linear relationship
between the magnetization of the ferro�uid and the magnetic �eld:

M = � (r )
�
H ext +H ferro(M)

�
, (1)
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Fig. 4. Illustration of the normalized magnetic susceptibility � (r ). The
distance between adjacent particles is given by h, the kernel size parameter
(see Eq. (10)). The circle indicates the support of the kernel function. On the
le� side, the cross-section in the middle is plo�ed as a blue curve along with
a kernel functionW in Eq. (10) plo�ed in red. The susceptibility is constant
within the center region of the continuum and drops quickly down to zero
beyond the boundary. A transition layer (the sloped region in the le� blue
curve) of approximately 2h is observed.

where H ext is the external magnetic �eld, H ferro is the magnetic
�eld generated by the magnetized ferro�uid, and � is the volume
magnetic susceptibility �eld which is zero outside the �uid and
constant inside the �uid. We emphasize here, that � : r 7! � (r ) is
a function mapping the spatial position r onto the corresponding
susceptibility. Later, � can be a constant.
The magnetization problem asks for M given a �xed external

magnetic �eldH ext. From Eq. (1), it is clear that the magnetizationM
is a function ofH ferro which is generated by the ferro�uid itself. We
approach this complicated phenomenon by starting from a simpler
question asking for the �eldH ferro generated by the ferro�uid given
a known magnetizationM . The related Maxwell’s equations are

r · B = 0 ,
B = µ0(H +M) , (2)

r ⇥H = J f +
@D

@t
,

where B is the magnetic �ux density, µ0 = 4� · 10�7 NA�2 is the
permeability of the vacuum,H = H ext+H ferro is the total magnetic
�eld, J f is the free current density, D is the electric displacement
�eld, and t is the time parameter. The moving ferro�uid’s magnetic
�eld is too weak to cause signi�cant eddy currents and magnetic
damping. Therefore we neglect the associated time derivative part.
On the other hand, the ferro�uid is non-conductive, so the free
current density is only associated with external magnetic sources.
After these simpli�cations,

r · (M +H ext +H ferro) = 0 , (3)
r ⇥ (H ext +H ferro) = J f . (4)

The external �eld solely generated by the �ow of electric charges is
una�ected if we remove the �eld caused by the ferro�uid. Therefore,
another set of equations for the external �eld emerges:

r ·H ext = 0 , (5)
r ⇥H ext = J f . (6)

We substitute Eq. (5-6) into Eq. (3-4)

r ·H ferro = �r ·M ,
r ⇥H ferro = 0 .

The last equation indicates that H ferro is curl-free, so it can be
represented by the negative gradient of another scalar function �,
i.e., H ferro = �r�.

We turn this problem into Poisson’s equation:

r2�(r ) = r ·M , (7)
� |1 = 0 .

Here, we apply zero Dirichlet boundary conditions at in�nity be-
cause of the huge distance from the sources. Such quasi-static as-
sumptions leading to a scalar Poisson’s equation were also used in
previous physics literature [Cao and Ding 2014; Gollwitzer et al.
2007; Odenbach 2008]. In the next step, we discretize Eq. (7).
In our model, the magnetic continuum is represented by thou-

sands of small particles. Each particle represents a density distribu-
tion (cloud) of billions of magnetic nanoparticles sharing the same
direction. From now on, a “particle” represents a cloud of magnetic
nanoparticles. Each particle has the same spherically symmetric
Gaussian-like density distribution function W known as the so-
called “kernel”; see Figure 4, left. The positions of these particles
are also used in SPH �uid simulations in which the uniform spacial
distribution of particles is guaranteed. Hence, the magnetic sus-
ceptibility � , which is proportional to the density of the magnetic
nanoparticles, is constant inside the �uid and drops rapidly down
to zero outside the region occupied by the �uid; see Figure 4.

The magnetizationM in Eq. (7) is discretized. Assume we have N
particles, and each particle enumeratedwith an index i is magnetized
according to the magnetic �eld at its center r i :

M(r ) =
N’
i=1

miW (r � r i ,h) , (8)

mi = V �
�
H ext(r i ) +H ferro(r i )

�
, (9)

wheremi is the total magnetic moment of the particle enumerated
with the index i , V = (�x)3 is the volume of each particle as all
particles are initially placed on a grid with �x-spacing, � is not
a �eld but a constant for this liquid now, andW (r � r i ,h) is the
Gaussian-like kernel function centered around r i . The parameter h
controls the size of the kernel. We make use of the kernel function
[Monaghan 1992]

W (r ,h) = 1
h3

w
⇣ r
h

⌘
,

π
W (r ,h) dr = 1 (10)

with r := |r | andw(q) : R 3 q 7! w(q) 2 R ,

w(q) = 1
�

8>><
>>:
0.25 (2 � q)3 � (1 � q)3 0  q < 1 ,
0.25 (2 � q)3 1  q < 2 ,
0 q � 2 .

After substituting Eq. (8) into Eq. (7) we obtain

r2�(r ) = r ·
N’
i=1

miW (r � r i ,h) . (11)

The �eld generated by the ferro�uid is the superposition of the
�elds generated by all ferro�uid particles. The details of solving
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Eq. (11) with one particle are in the supplemental material (S1). For
a single particle with kernelW placed at the origin with a total
magnetic momentm, the magnetic �eld at r is given by

H (r ,m) = (r̂ ·m)
�
Wavr(r ) �W (r )

�
r̂ � Wavr(r )

3
m , (12)

with r̂ := r/r for r > 0, and by H (r ,m) = �W (0)/3m for r = 0.
Here, we make use of the average density within r :

Wavr(r ) =
✓
4�
3
r3

◆�1 π r

0
4�� 2W (� ) d� .

Wavr depends on Eq. (10) and can be evaluated similarly to the den-
sity functionW , butw(r/h) in Eq. (10) is replaced by the following
expression:

wavr(q) =
1
�

8>>><
>>>:

1
40 (15q3 � 36q2 + 40) 0  q < 1 ,
�3
4q3

⇣
q6

6 �
6q5

5 + 3q
4 � 8q3

3 +
1
15

⌘
1  q < 2 ,

3
4q3 q � 2 .

Using Eq. (12) as the solution for a single particle, we are ready
to solve the magnetization of the ferro�uid in an external magnetic
�eld. We formulate this as a least squares problem. Before arriving at
the objective function, we �rst clarify some variables and matrices.
The variables of this objective function are the magnetic �ux den-
sity at each particle position divided by the vacuum permeability,
i.e., B(r i )/µ0. Using Eq. (2,8,12) we obtain

B(r i )
µ0
= H ext(r i )+

N’
j=1

�
H (r i � r j ,mj ) +mjW (r i � r j ,h)

�
. (13)

Please note that according to Eq. (12),H (r ,mi ) is linear with respect
to the magnetic momentmi . Hence, Eq. (13) can be written in a
matrix form:

b = Gm + hext , (14)

where m and b are vectors with 3N scalar elements, and G is a
3N ⇥ 3N dense matrix given as a function of all particle positions
r i . Here, hext is also a vector of 3N scalar elements representing
H ext measured at the particle positions.

We express the magnetization using the �ux density B instead of
the magnetic �eld H by incorporating Eq. (1,2,9):

mi = V
�

1 + �

B(r i )
µ0
.

This can be expressed as a scalar-vector product:

m = �b , � = V
�

1 + �
. (15)

Finally, we substitute Eq. (15) into Eq. (14), and obtain the linear
equation system

(G� � 1)b = �hext , (16)

in which 1 denotes the identity matrix. We are going to solve this
equation in the least-squares sense.

3.2 Force Model
The needle in a compass receives a torque from the Earth’s magnetic
�eld until it points to the Earth’s magnetic �eld direction. A mag-
netic particle receives the torque in the same way. After we solve the
magnetization process, the magnetic moment of a particle is aligned
with the magnetic �eld direction. Therefore, there is no magnetic
torque and we can safely only consider the magnetic force. A huge
number of magnetic body force models can be found in the litera-
ture [Byrne 1977; Engel 2001; Liu 2001; Odenbach 2008; Odenbach
and Liu 2001] and previous contributions employing mesh-based
methods [Cao and Ding 2014; Gollwitzer et al. 2007; Lavrova et al.
2006, 2008] obtain successful results using these force models. All
force models have a surface force term due to the discontinuous
body force tensor on the �uid-air interface. Mesh-based methods
have a de�ned boundary and it is easy to attribute this force to the
boundary nodes. However, our smooth magnets model has a vague
boundary for the liquid (see Figure 4). The surface force term can
be calculated as the integral of body forces in the thin boundary
([Byrne 1977], Sec. 2.1). A naive approach to add the theoretical
surface force term at the �uid boundary particle center introduces
errors because it neglects the major contribution in the smooth
region. We accurately calculate this body force integral for a parti-
cle analytically for the long range, and numerically when particles
overlap. The body forces integral at the boundary particles naturally
contains the surface force term. This approach does not need extra
e�ort to detect boundary particles.
The magnetic force on a particle is given by the total magnetic

forces received by all its nanoparticles. The Kelvin force (see Table 1
in Byrne’s work [1977]) is used for the force density because of its
simplicity:

FKelvin = µ0M · rH .
The total force f s!t from the source (s) to the target (t) is given by

f s!t =

π
FKelvin dr = µ0

π
Mt (r ) · rH s (r ) dr

=µ0mt ·
π

W (r � r t ,h)rH (r � r s ,ms ) dr , (17)

where the integration only covers regions withMt , 0. The source
and target center locations are given by r s and r t . Using Eq. (12),
rH 2 R3⇥3 is determined analytically:

rH (r ,m) = (1(rTm) + rmT +mrT)A(r ) + r (rTm)r
T

r
A0(r ) , (18)

A(r ) =Wavr(r ) �W (r )
r2

,

A(r )0 =5W (r )
r3
� 5Wavr(r )

r3
� 1
r2

dW (r )
dr

,

where a temporary scalar A is used and r = |r |, and 1 2 R3 denotes
the identity matrix. It can be used to validate r · (H +M) = 0.

For |r t � r s | > 4h, Eq. (17) has a closed-form solution.
H (r � r s ,ms ) is harmonic (divergence-free and curl-free) if |r �

r s | > 2h because of Ms = msW (r � r s ,h) = 0. If |r t � r s | > 4h,
rH is harmonic for the whole integral domain (|r �r t |  2h). Since
W (r � r t ,h) is spherically symmetric around r t , using the mean
value property for harmonic functions, the integral in Eq. (17) can
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analytically be determined as

f s!t = µ0mt · rH (r t � r s ,ms ), if |r t � r s | > 4h . (19)

It happens to be the force of a point dipolemt at particle center
r t in the source �eld H s . If Eq. (19) is used, if |r t � r s |  4h, we
denote it as the “center-only force model”.

For |r t �r s |  4h,H s is in general not harmonic, so that we make
use of numerical integration. However, the numerical integration
for each pair of particles is expensive. Instead, we �rst numerically
evaluate the integral for a series of particle distances |r t �r s |, kernel
sizes h, and particle moment directions ms ,mt in advance, and
�t the measured data as piece-wise polynomials for later e�cient
evaluation. The details of the full derivations are shown in the
supplemental material (S3). We denote this numerical integration
of the Kelvin force Eq. (17) using a �tted black-box function as our
“�tted force model”.

In the �rst step, the force in local coordinates is calculated to
remove directional dependency. The origin is set up in the center of
the source particle; see Figure 5. Let �̂ , �̂, �̂ be the unit vectors of the
axes and assume the target particle is on the � axis. The rotation
matrix is denoted as R = (�̂ , �̂, �̂ ), so that a vector in the world
coordinatem can be connected to its local coordinate counterpart
m̃ bym = Rm̃ and m̃ = R

T
m. A tilde indicates that it is the local

coordinate vector. In this coordinate system, the same physical law
given by Eq. (17) holds:

f̃ s!t = µ0m̃t ·
π
W (r̃ � (0, 0, |r t � r s |)T,h)rH (r̃ ,m̃s ) dr̃ . (20)

In the second step, the dependency on m̃s and m̃t is removed.
The force is bilinear in both the source and target moments, and
Eq. (20) states a mapping: R3 ⇥ R3 ! R3. This relationship can be
described by a third-order tensor �̃ with 27 entries:

f̃ �s!t =
3’

�=1

3’
�=1

�̃� �� (|r t � r s |,h)m̃�
s m̃

�
t , � 2 {1, 2, 3} , (21)

where we use � , � ,� for denoting vector (tensor) components in
local coordinates.

In the third step, we use the integral formula Eq. (20) to determine
the tensor �̃� �� numerically. First, we loop the normalized distance
q from 0 to 4. The target particle is then placed on (0, 0,qh)T. The
source and target moments m̃s and m̃t loop over three directions:
(1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T. For each of the nine combination, the
force f̃ s!t is determined by Eq. (20) . After nine measurements,
the tensor value �̃� �� for this distance qh is obtained. The target
particle at r̃ t = (0, 0,qh)T is contained in a cube with an edge length
of 4h; see Figure 5. The container is divided into 10⇥10⇥10 cells. We
use 1 000 quadrature points to obtain the integral results. After the
measurements for various q and h we discover that when we �x the
normalized distance q, the tensor is proportional to h�4. Most of the
27 entries in �̃� �� are zeros. Finally, the six of the seven non-zero
entries share the same curve C1 : q 7! C1(q), and one obtains an
unique curve C2 : q 7! C2(q):

�̃311, �̃322, �̃113, �̃223, �̃131, �̃232 = C1(q)h�4 , (22)

�̃333 = C2(q)h�4 . (23)

y

z

x

Fig. 5. Illustration of measuring the force from the source kernel (blue) to
the target kernel (red) in the rotated coordinates (� , �, � ) (le�) and rotated
coordinates (� , �, � ) embedded in world coordinates (x, �, z) (right).

The center force Eq. (19) is inaccurate in the near-�eld |r t �r s | 
4h. The di�erence is illustrated in Figure 6. The center-force curve is
obtained by using the center-force formula Eq. (19) to �t the tensor
�̃ in Eq. (21) in the near-�eld. The polynomial coe�cients are listed
in Table 3 and 4 in the appendix.

In the forth step, the summation variables are changed from forces
to force tensors. In the large-scale summation, we use the FMM to
accelerate the computations. The FMM can only use the positions of
the target particles, but summing the forces requires target moments.
Therefore we must change the force to a quantity independent of
the target magnetic momentmt . In order to do so, the summation
in Eq. (21) is divided into two parts by introducing a 3 ⇥ 3 source
force tensor T̃ s :

f̃ �s!t =
3’

�=1
T̃
��
s m̃

�
t ,

T̃
��
s =

3’
�=1

�̃� �� (|r t � r s |,h)m̃�
s .

Since �̃ is sparse, one can directly write the force tensor T̃ s in local
coordinates:

T̃ s =h
�4 ©≠

´
m̃3
sC1(q) 0 m̃1

sC1(q)
0 m̃3

sC1(q) m̃2
sC1(q)

m̃1
sC1(q) m̃2

sC1(q) m̃3
sC2(q)

™Æ
¨
, (24)

where the superscripts denote the components. We transform the
force tensor T̃ s to the world coordinates:

T s = RT̃ sR
T, (25)

whereT s is the force tensor in world coordinates.T s only depends
on the target position, so that it is suitable for the summation to use
the fast multipole method:

f t =

 N’
s=1

T s (r t )
!
mt . (26)

4 IMPLEMENTATION
In this section, we provide an overview of our ferro�uid solver
and discuss each component in detail. We provide pseudocode for
both, the SPH part and the magnetic force computation, to ensure
reproducibility.
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Fig. 6. Illustration of the curves C1 : q 7! C1(q) (le�) and C2 : q 7! C2(q)
(right); see Eq. (22,23). The polynomial coe�icients are listed in Table 3 and
4 in the appendix. The red dashed lines represent the center forces while
the blue lines represent the fi�ed forces.

4.1 Algorithm Overview
The magnetic force is determined by the particle positions and can
directly be added to the particle force in the SPH simulator. We
summarize the steps of the �uid solver in Algorithm 1 and the
magnetic force solver in Algorithm 2.

In Algorithm 1, the SPH algorithm similar to the work of Adami
et al. [2012] is presented: t is the time variable, tmax is the simulation
duration, and N denotes the number of particles. The subscript i
denotes the index of the associated particle, a is the acceleration,m
is the particle mass, and f is the force from a pure �uid simulation.
The functionMagneticForce is implemented in Algorithm 2. It re-
ceives all particles positions, and returns the magnetic force on each
particle:v is the velocity, r is the position of each particle, and � is
the density. It is evolved using the continuity equation eliminating
the particle de�ciency problem near the surface.

In Algorithm 2, we describe how to obtain the magnetic forces f .
The input of the algorithm are the positions of the particles r , the
magnetic kernel size h, a constant � = V �/(1 + � ) determined by
the particle volumeV and the material susceptibility � . Initially, we
place particles on Cartesian grids with spacing �x . The volume is
obtained by V = (�x)3.

ALGORITHM 1: SPH solver according to Adami et al. [2012].
t  0
while t < tmax do

for i  1 to N do
if 0 = t then

//Force evaluation according to Algorithm 2:
ai (t ) 1

m (f i (t ) +MagneticForce(r )i ).
end
v i (t + 1

2�t ) v i (t ) + �t
2 ai (t )

r i (t + 1
2�t ) r i (t ) + �t

2 v i (t + 1
2�t )

�i (t + �t ) �i (t ) + �t d�i (t + 1
2�t )/dt

r i (t + �t ) r i (t + 1
2�t ) + �t

2 v i (t + 1
2�t )

ai (t + �t ) 1
m (f i (t + �t ) +MagneticForce(r )i ))

v i (t + �t ) v i (t + 1
2�t ) + �t

2 ai (t + �t )
end
t  t + �t

end

ALGORITHM 2: Magnetic force computation.

Input: r 2 R3N , h 2 R, � 2 R
Output: f 2 R3N

//Magnetization
Function G(m):

for t  1 to N do
H t  0 2 R3;M t  0 2 R3;
for s  1 to N do

H t  H t +H (r t � r s ,ms ) //Eq. (12)
M t  M t +msW (r t � r s , h) //Eq. (8,10)

end
end
return H +M

end
Get hext(r ) from external sources (see Eq. (16)).
Solve (G � � 1)b = �hext for b in the least-squares sense.
Employ G in a conjugate gradient solver.

//Magnetic force
for t  1 to N do

U 2 R3⇥3; U  0;
for s  1 to N do

if |r t � r s | < 4h then
Get normalized distance: q  |r t � r s |/h.
Get the local coordinates as described in Figure 5.
Get local source moment: m̃  RTms .
Evaluate local force tensor T̃ s : Eq. (24).
Get world force tensor T s  RT̃ RT: Eq. (25).

else
T s  µ0rH //Eq. (18,19)

end
U  U +T s

end
f t  U mt

end
Add external magnetic forces.
return f

4.2 Fluid Solver
The magnetic force solver only relies on particle positions as input.
In principle, any Lagrangian �uid solver can be integrated with our
magnetic force model. To prove the concept of our ferro�uid model,
we use the SPH algorithm as employed by Adami et al. [2012] since
it is easy to use because of its simplicity. In this subsection, we �rst
present the details of our SPH solver and then discuss potential
improvements.

For the free-surface problem, we do not use the background pres-
sure, and employ an exponent � = 7 in the pressure state equation.
Adami et al. [2012] extrapolate the pressure from the �uid to the wall
particles using the gravity as the only non-pressure acceleration. In
our cases, magnetic forces and surface tension also contribute to
the acceleration. Initially, we added surface tension and magnetic
forces next to gravity forces. Then we found that regardless of what
part of acceleration we include, as long as it is extrapolated using
the �uid pressure according to the authors’ approach, the wall pres-
sure causes random ghost force artifacts, pushing particles near the
boundary inward. We employ a practical workaround and set the
pressure within the wall particles to zero, but still let wall particles
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contribute to the density evolution of �uid particles. Please note
that using an alternative SPH method and boundary handling might
circumvent this problem. In addition, we note that some advanced
SPH solvers [Bender and Koschier 2017; Ihmsen et al. 2014a] avoid
excessive attractive pressure forces by clamping the negative pres-
sure. We discuss the pressure forces here as we use it to resolve the
expansion artifacts caused by the Kelvin force model. The Kelvin
model we used (see Table 1 in Byrne’s work [1977]) has a surface
force term pointing outward of the ferro�uid. In our �rst SPH im-
plementation (see Figure 10a), we use weighted mass summations
to calculate the density, then use an equation of state (EOS) to get
the pressure. We avoid surface artifacts by removing the negative
pressure. This implementations penalizes �uid compression but not
volume expansion. When we add the Kelvin magnetic force, the
surface particles are levitated, causing expansion of �uid volume.
Such an expansion is not penalized. Although the surface tension
forces point inside the �uid, they are not su�cient to reduce this
artifacts. We then changed the SPH implementation to use the con-
tinuity equation to evolve the density, and an EOS for pressure (see
Figure 10a). Please note that the negative pressure is not removed.
This implementation penalizes both compression and expansion
of the �uid. Therefore, the levitation artifacts due to the Kelvin
magnetic forces are penalized by the continuity condition.

We �rst set up all particles on uniform Cartesian grid nodes. Then
we mark the boundary particles and �uid particles, and �nally re-
move all particles in the air. We choose the quintic spline kernel
support radius to be 3h, where h is the particle spacing in uniform
grids. For the surface tension, we use k = 1 in the surface tension
pair-wise curve in Eq. (6) of Yang et al. [2017]. The whole computa-
tional domain is divided into small cells whose edge lengths are 3h.
The particles in one cell only interact with the neighboring 27 cells.

At the initial phase and whenever the particles move, we �nd the
cell number that a particle reside and record it in each particle. The
particles are then sorted according to these cell numbers. Finally,
each cell records the begin and end of the particle index after sorting.
In our CUDA program, we assign each cell to a block of threads.
The particle quantities in the neighboring 27 cells are loaded to the
shared memory and are used for the summation by the current cell.

The magnetic force part is much more time consuming than WC-
SPH. Therefore we treat the WCSPH as a multi-step integrator to
advect the particle, and only update the magnetic force every few
iterations. We gradually take more (ten)WCSPH steps between mag-
netic force steps until the results become incorrect. The boundary
handling relies on pressure forces which depends on the arti�cial
sound speed. A strong magnetic force requires a larger arti�cial
sound speed to prevent particles from penetrating the boundaries.
This leads to a highly sti� system and the sound speed has to be
tuned carefully. By using more e�cient SPH �uid solvers (PCISPH
[Solenthaler and Pajarola 2009], IISPH [Ihmsen et al. 2014a], DFSPH
[Bender and Koschier 2017]), a larger time step size can be chosen
and sound speed tuning can be avoided. We encourage the reader
to try out the possibilities mentioned in the related work section
about the recent progress regarding more e�cient �uid solvers as
well as more accurate boundary handling. In particular, existing
incompressible solvers are much faster than WCSPH, enabling the

0 200K 400K 600K 800K 1M
0

10

20
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Fig. 7. Runtime comparison between the naive summation (red,O (n2)) and
the FMM implementation (blue, O (n)) for one evaluation of G measured
for di�erent numbers of particles n. T is the runtime in seconds, and n is
the number of particles. The curves are fi�ed using a quadratic and a linear
function. The point of intersection is approximately located at n = 40K. For
one million particles, the FMM takes about 1.5 seconds. To obtain these
computation times, we magnetized cubes of di�erent sizes.

computation of magnetic forces in every step (instead of every tenth)
and hence might lead to more accurate magnetic forces.

4.3 Magnetization
Simulating the magnetization of the ferro�uid is equivalent to solv-
ing the linear Eq. (16) which is trivial in a conjugate gradient frame-
work in which matrix-vector multiplicationsGx are implemented.
Here, x is any vector of length 3N with N being the number of
particles.
In the conjugate gradient method for least squares, we need to

evaluate the gradient using the adjoint operator GT. Fortunately,
G is symmetric which can easily be seen from Eq. (12,13). There
are several properties which can be exploited when solving this
least squares problem. Eq. (12) reduces to a dipole magnetic �eld
expression if r is large andW (r ,h) becomes zero. This makes it
possible to use the FMM [Beatson and Greengard 1997] to accel-
erate the summation in Eq. (13) for particles which are far away.
During the solving process, the particles’ positions are �xed, so the
tree structures of the FMM does not need to be reconstructed in
every iteration, saving the expensive overhead. We use the FMMTL
library [Cecka and Layton 2015] to calculate the summation. The
performance comparison is illustrated in Figure 7.
Since we use a linear magnetization model, � is constant, and

Eq. (16) is a pure linear equation. A least squares solution is guaran-
teed as it is convex. We can use the analytical step size for the update
which only requires one evaluation of the expensive G operator
saving the e�ort of a line search. The solution b at a previous time
step is used as a warm start.
Within the FMMTL library [Cecka and Layton 2015], the solver

for the electric potential of a cluster of point charges is already
implemented. It is is based on the same equation as magnetic and
gravitational potentials. One part of it has to be modi�ed in order
to use a cluster of dipole charges as sources.

This part is called the source-to-multipole transfer [Beatson and
Greengard 1997; Cecka and Layton 2015]. For k point charges, this
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transfer has the following structure (Eq. (5.16) in Beatson and Green-
gard [1997]):

pM
m
n =

π k’
s=1

�nY�mn (� , �)qs� (r � r s ) dr , (27)

where (�,� , �) is the source location represented in spherical coor-
dinates, pMm

n is the multipole expansion for point charges of degree
n, orderm. The charge amount for source s is denoted by qs and the
spherical harmonics function of degree n, order �m is denoted by
Y�mn . The exponentiation of � to the power of n is denoted by �n .

Dipole charges have a right hand side term r ·ms� (r � r s ) in
Poisson’s Eq. (11) di�erent from the point charges �qs� (r �r s ). We
modify this part in Eq. (27). After integration by parts, we obtain

dM
m
n =

k’
s=1
r
�
�ns Y

�m
n (�s , �s )

�
·ms ,

where dMm
n is the multipole expansion coe�cient for dipole charges

and ms is the magnetic dipole moment for particle s . After this
simple modi�cation, the FMM program for electric charges can be
easily used for the evaluation ofG.

We formulate the external �eld in Eq. (14) also as the one gener-
ated from magnetic particles: the sameG instance is used, but exter-
nal particles are treated as sources. External evaluations only have
to be performed once as the external �eld is unchanged throughout
the magnetization solving process.

4.4 Force Evaluation
For the evaluation of the force tensor in the far �eld, we also use
the FMM to further accelerate the computations. The force tensor is
exactly the negative Hessian of a potential function � in Cartesian
coordinates:

T = µ0rH = �µ0r(r�) .
Since our far-�eld potential function is evaluated in spherical coor-
dinates, cumbersome derivations are needed in order to obtain the
force tensor in Cartesian coordinates. The details of these deriva-
tions can be found in the supplemental material (S2).

5 NUMERICAL EXAMPLES
In this section, we present several numerical examples to study
the capabilities of our approach and illustrate the in�uence of the
di�erent components of our model. We further demonstrate that we
are able to qualitatively reproduce the behavior of real ferro�uids.
In this regard, our simulations are validated against theoretical pre-
dictions and real experiments. A summary of the computation times
of the di�erent examples is provided in Table 1 and an overview of
the parameters employed throughout this section can be found in
Table 2.

5.1 Fluid Crown
In the absence of an external magnetic �eld, our approach is reduced
to a SPH �uid simulation with surface tension. In order to validate
that this �uid simulation part is working appropriately, we simulated
the canonical example of an additional droplet falling into the �uid.
The round shapes on the tip of the �uid and the typical shape of

Table 1. This table provides an overview of the computation time needed
for simulating di�erent numerical examples. We do not list the bunny and
helix showering examples from Section 5.7 and 5.9 because the number of
particles is varying in these cases. However, the example of the ferrofluid
climbing up the helix presented in Section 5.10 provides an estimation for
the number of particles and computation time for the bunny and helix
showering examples. Moreover, the test cases illustrating the relevance of
the di�erent components of our model require a similar number of particles
and consume the same computation times as their control cases, so we are
also not listing each test case in this table. In all of these simulations, we
make use of the FMM. All simulation times are measured on a desktop
computer with two Intel®E5-2687w v4 CPUs each clocked at 3.0GHz and
256 GB DDR-RAM. The SPH part runs on one NVIDIA®GeForce ®GTX
1080, and the FMM uses two GTX 1080 GPUs and 24 CPU cores for high
performance computations.
?The computation time is measured per 100 SPH sub-steps. The magnetic
force is calculated every 10 SPH sub-steps, taking about 70% of the total
runtime. A scene usually takes around [400, 1200] ⇥ 100 fluid sub-steps.

Section Scene Description Particles Runtime?

5.1 Fluid Crown 482K 16.6 s
5.2 Varying Surface Tension and Field Strength 48K 11.7 s
5.5 Dipole Experiments 98K 25.3 s
5.6 Field Line Orientation 60K 15.1 s
5.8 Ferro�uid Attracted by a Steel Sphere 320K 90.0 s
5.10 Ferro�uid Climbing Up a Helix 230K 62.5 s

Fig. 8. Illustration of the fluid crown example in the absence of an external
magnetic field. The round shapes on the tip of the fluid and the typical
shape of the fluid crown can be observed here as a consequence of surface
tension.

the �uid crown can be observed here as a consequence of surface
tension. This is illustrated in Figure 8.

5.2 Varying Surface Tension and Field Strength
When being exposed to a (vertical) external magnetic �eld, ferro�u-
ids form their characteristic spikes. This phenomenon is called the
normal-�eld instability [Rosensweig 1988]. Figure 2 shows the in�u-
ence of surface tension and the magnetic �eld strength on the shape
of the spikes: a strong surface tension force smooths the contour,
while a strong �eld strength increases the height of the spikes. Nine
experiments are conducted in which the surface tension coe�cients
(pair-wise force coe�cients) vary from 0.2 · 108 over 0.5 · 108 to
1.0 · 108 N/kg2 and the �eld strengths from 1.1 · 104 over 1.2 · 104 to
1.3 · 104 A/m.

In order to allow for a more quantitative comparison against spe-
ci�c data obtained in real experiments, we systematically increase
the strength of the vertical magnetic �eld while measuring the
heights of the resulting spikes within the ferro�uid domain. This is

ACM Trans. Graph., Vol. 38, No. 4, Article 93. Publication date: July 2019.



93:10 • Huang, L. et al.

Table 2. This table provides an overview of the (parameter) setup for the simulations. The size of the particles is listed in meters chosen in a way that they
appropriately capture the fine details of the spikes. We observe typical dimensions of the spikes within [3, 10]mm. We choose the same size parameter h for
the magnetic kernel, and set the maximum number of iterations to 20. The susceptibility is taken from Gollwitzer et al. [2007] except for the dipole experiments
in which we adjust the parameters based on the height of the spikes. For describing the strength of surface tension, the pair-wise force coe�icients are listed
according to Yang et al. [2017]. Coe�icients in the range of 108 N/kg2 are used chosen in a way that surface tension and magnetic forces share the same
magnitude. Sound speed, viscosity and artificial viscosity parameters are used according to the description by Adami et al. [2012]. Relatively high sound
speeds are used in order to keep the density invariant leading to a sti� system that evolves slowly. Viscosity and artificial viscosity damp the simulation and
increase numerical stability in turbulent cases. However, it shows no crucial impact on the spike shapes. The strength of the external magnetic field is chosen
in such a way that it allows for the accurate formation of the spikes. The time step sizes are listed in seconds.

Section Scene Description Particle Size (h/m) Susceptibility (� ) Surface Tension Sound Speed Viscosity Arti�cial Viscosity External Object Time Stepize (�t/s)
5.1 Fluid Crown 5.0 · 10�4 1.2 1.9 · 108 9.0 1.0 · 10�3 0.40 No Magnet 3.0 · 10�5
5.2 Surface Tension and Field Strength 5.0 · 10�4 1.2 [0.2, 1.0] · 108 9.0 1.0 · 10�3 0.04 Vertically Constant 3.0 · 10�5
5.5 Dipole Experiments 2.5 · 10�4 0.8 16.0 · 108 9.0 1.0 · 10�3 0.04 Cylindrical Magnet 3.3 · 10�5
5.6 Field Line Orientation 5.0 · 10�4 1.2 0.4 · 108 16.0 1 · 10�3 0.04 Rotating Cuboid Magnet 3.3 · 10�5
5.8 Ferro�uid Attracted by a Steel Sphere 5.0 · 10�4 1.2 1.5 · 108 9.0 5 · 10�3 0.40 Magnetized Sphere 3.0 · 10�5
5.7 Ferro�uid Interacting with the Bunny 5.0 · 10�4 1.2 2.0 · 108 10.0 5 · 10�3 0.40 Bunny-shaped Magnet 3.0 · 10�5
5.9–5.10 Ferro�uid Interacting with the Helix 5.0 · 10�4 1.2 2.0 · 108 10.0 2 · 10�3 0.40 Helix-shaped Magnet 3.0 · 10�5
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Fig. 9. Illustration of the dependence of the average height of the formed
spikes on the bifurcation parameter � . Our simulation (red squares) suc-
cessfully reproduces the qualitative trend shown in real data (blue curve;
[Gollwitzer et al. 2007], Figure 12) while the height of the spikes di�ers
due to di�erent surface tension strengths. The formation of the spikes can
precisely be observed around � = 0 in the simulation and in reality.

illustrated in Figure 9 showing a comparison of the results obtained
by our simulations with experimental data taken from Gollwitzer
et al. [2007] (see Figure 12 therein). The spikes are formed once a
critical �eld strength of B = Bc is reached which corresponds to a
bifurcation parameter � = (B2 � B2c )/B2c = 0. The critical strength
Bc is �tted from the measured curve. As it can clearly be observed,
the simulations carried out with our approach can successfully re-
produce the qualitative trend shown in real experimental data. The
spike formation rapidly takes place after � = 0 in the simulation
as in the real experiment. However, the height of the spikes in the
simulation is higher than in the real experiment. This is caused by
the use of a linear magnetization model neglecting the saturation
of the magnetization in strong �elds leading to a highly magnetized
�uid. If the �eld strength is below the critical one, our simulation
shows small elevations (not spikes). The magnetic force deforms
the SPH surface but is not strong enough to form spikes.

5.3 Levitation Artifacts
The surface force term of the Kelvin force model points outward
of the ferro�uid. It moves the surface particles away from the �uid
body and causes �uid volume expansion. We resolve this artifacts by
keeping negative pressures which penalizes �uid volume expansion.
Figure 10a shows a snapshot before the spikes are formed. On the
left, we do not penalize �uid expansion, and the surface particles

�oat away from the bulk liquid. This case uses the high �eld strength
and low surface tension setup from Section 5.2.

5.4 Comparison of Center and Fi�ed Forces
The center (see Eq. (19)) and �tted force (see Eq. (26)) models produce
generally equivalent shape structures in homogeneous �elds as
illustrated in Figure 10b. However, the dynamical sequence shows
more �uctuation in the case of the center force model. This case
uses the medium �eld strength and medium surface tension from
Section 5.2 except di�erent force models.

5.5 Experiments using a Dipole Source
In this example, we are lifting a tray of ferro�uid located above
a magnetic dipole source. Initially, the ferro�uid is packed in a
square cube on the center of the tray with a radius of 2.5 cm. It is
then released freely under the in�uence of gravity and the external
magnetic �eld causes the formation of the spikes almost instantly.
The tray is then lifted and as a consequence the spikes are �attened
as illustrated in Figure 11. Wemake use of su�ciently small particles
(h = 0.25mm) in order to achieve a high resolution. We choose the
surface tension coe�cient so that the ferro�uid in the absence of a
magnetic �eld has the same thickness like water drops on a plastic
plane. We then set up a proper susceptibility and �eld strength to
control the size of the spikes and make sure that the spikes disappear
when the tray is lifted about 2 cm as shown in the real experiment.
The magnet is a cylinder with a radius of 2 cm and a height of 8 cm
with constant M = 140 kA/m. It is represented by thousands of
magnetic particles occupying the space of the cylinder. The top of
the cylinder is initially located 2 cm below the tray. We tune the
parameters to match the magnitude, density, width of spikes in the
web-lab experiment. We �nd the �uid parameters to be quite close
to the ones of real ferro�uids, and the magnetization of external
magnets close to the ones of real magnets.

5.5.1 Comparison of Center versus Fi�ed Forces. We again compare
the center and the �tted force models. In contrast to the comparison
in Section 5.4, we are now making use of the dipole setup described
above. As illustrated in Figure 12a, the center force formulation leads
to unstable results when employing the SPH �uid solver used in this
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(a) The Kelvin force model has an outward surface force term, causing
surface levitation artifacts and volume expansion. On the le�, we only
enforce volume compression. On the right, the artifacts are resolved if
we value both fluid compression and expansion.

(b) Center (le�) and fi�ed (right) forces models produce identical shape
structures in homogeneous fields. However, the dynamical comparison
shows the presence of more fluctuations when only the center forces
are present.

Fig. 10. Illustration of the relevance to appropriately handle levitation artifacts (a), and a comparison of the center and fi�ed force models (b). In these
simulations, constant magnetic fields are employed.

Fig. 11. Illustration of our li�ing experiments of a tray of ferrofluid above a
dipole source. The results of our simulation (le�) and the real experiment
(right) are shown.

paper within the magnetic �eld setup. This shows the importance
of our �tted force model.

5.5.2 Relevance of Inter-particle Magnetic Forces. Modeling inter-
particle magnetic forces is inherently relevant in order to allow
for the formation of the characteristic spikes. As illustrated in Fig-
ure 12b, the spikes cannot be generated if inter-particle magnetic
forces are not included.

5.5.3 Varying Numbers of Iterations. The evaluation of the mag-
netic forces requires usually at least around 10 iterations in order to
solve the magnetic �eld accurately. Reducing the number of itera-
tions would make the simulation less accurate, but more e�cient.
Interestingly, even when solving the magnetic �eld with only one

iteration, we get visually similar results as illustrated in Figure 12c.
In more dynamical scenes, this is di�erent.

5.5.4 Varying Kernel Sizes. In our simulation, the magnetic ker-
nel (cubic; support of 2h) and the SPH kernel (quintic spline ker-
nel; support of 3h) share the same parameter h. However, it is
possible to choose a larger kernel parameter hmag for the mag-
netic part. A too-small magnetic kernel leads to strong magnetic
forces when two particles are close, introducing instabilities. For
evaluation purposes, we tested four di�erent parameter setups:
hmag = (0.7, 1.0, 1.3, 1.6)hSPH. While 0.7hSPH lead to instability,
the other three setups are barely distinguishable as illustrated in
Figure 12d. A slightly smoother contour is observed for larger ker-
nels.

5.6 Field Line Orientation
We rotate the magnet as shown in Figure 13 to illustrate the im-
portance of the orientation of the �eld lines in order to form the
characteristic spikes. Our simulation reproduces the expected phe-
nomenon observed in real experiments.

5.7 Magnetization of Complex Geometries
In this section, we address the magnetization of complex geometries.
We constructed a virtual magnet which has the shape of the well-
known Stanford bunny [Levoy et al. 2005]; see Figure 15. It is essen-
tially a “frozen” ferro�uid which we coated with non-magnetizable
liquid particles. What appears in the rendering as a black bunny is
actually the coated layer which contains of �ve layers of particles.
These layers prevent direct contact between the ferro�uid particles
and the strong magnetic particles potentially causing instability.
Beneath the coating layer, the actual “frozen” ferro�uid particles
are located.
In particular, we constructed the bunny-shaped magnet as fol-

lows. First, a cubic volume is �lled with ferro�uid particles before all
particles outside the bunny geometry (within the cubic volume) are
removed. We set the susceptibility of these particles to a su�ciently
high value (� = 5 000) in order to mimic the ferromagnetic proper-
ties of the material. A cylinder magnet with constantM = 1 000A/m
is placed below the bunny in order to magnetize it. We apply the
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(a) When employing a dipole field, the importance of our fi�ed force
model is even more evident compared to the case of the constant mag-
netic field shown before in Figure 10b: the center force model (le�) leads
to unstable results compared to the fi�ed force model (right).

(b) Comparison of the simulation with disabled (le�) and enabled
(right) inter-particle forces. As it can clearly be observed, modeling
inter-particle magnetic forces is inherently relevant for the formation
of the characteristic spikes.

(c) Using only a single iteration for solving the magnetic field leads to
qualitative equivalent results (le�) compared to 20 iterations (right).

(d) We compare di�erent kernel sizes. As it can clearly be observed, the
di�erent visual results are barely distinguishable.

Fig. 12. Illustration of di�erent experiments using a tray of ferrofluid located above a magnetic dipole source.

Fig. 13. If the magnetic field lines are oriented almost in parallel to the
ferrofluid’s surface, no spikes can be observed (le�). An appropriate rotation
of the magnet causing a proper reorientation of the field lines leads to the
presence of spikes (right).

magnetization solver to the bunny-shaped ferro�uid so that each
particle of the bunny-shaped magnet has its own orientation and
strength. Such strength and orientation are �xed henceforward. Fi-
nally, we can multiply the strength of these particles by a certain
number in order to control the strength of bunny-shaped magnet in
the simulation. Using this procedure, we can produce magnets with
almost arbitrary shapes by simply magnetizing and “freezing” the
ferro�uid. However, when the coating layer is not thick enough or
the �eld is too strong, some ferro�uid would penetrate the coating
layer and after a while the whole simulation would become unsta-
ble. Improving the boundary handling techniques may solve this
penetration problem.

5.8 Ferrofluid A�racted by a Steel Sphere
In this example, a steel sphere is magnetized by a cylindrical mag-
net located below. The strength of the magnet is changed in time,

resulting in varying shapes of the attracted ferro�uid as shown in
Figure 14.

5.9 Ferrofluid Flowing Down a Helix
In order to allow for a qualitative comparison with more complex
geometry, we set up a simulation in which we pour a ferro�uid
down the top of a steel helix placed above a strong electromagnet.
We manufactured a helix of identical shape and perform a wet lab
experiment with real ferro�uid. The results are shown in Figure 16.
Our simulation leads to a visually comparable result providing a
qualitative benchmark. Please note that we do not explicitly calibrate
our simulation parameters with respect to the precise dimensions
of the spikes observed in the real experiment.

5.10 Ferrofluid Climbing Up a Helix
Inspired by the artwork of Kodama [2008], we make use of the
steel helix setup from Section 5.9 and surround the helix’s lower
part with ferro�uid as shown in Figure 17. As it can be seen, with
increasing electric current, the ferro�uid is attracted to the top of
the helix. This can successfully be reproduced using our simulation
approach; see also Figure 1. Please note that in reality, the ferro�uid
advances along the edges of the helix because the gradient of the
magnetic �eld strength is higher there. Due to the coating layer,
our actual magnetized helix is about 3mm away from the ferro�uid.
Hence, the tip of the coating layer is not the most attractive part
to the ferro�uid. This explains that in the simulation the spikes are
advancing along the broad band of the helix rather than along the
edges.
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Fig. 14. In this example, a steel sphere is magnetized by a cylindrically-shaped magnet located below. The sphere a�racts the ferrofluid. During the simulation,
the strength of the magnet is changed over time resulting in varying fluid shapes (from le� to right: medium, low, high, zero strength).

Fig. 15. We are able to simulate magnets of arbitrary shapes. In this example, the geometry of the well-known Stanford bunny is used. The magnetic bunny is
showered with ferrofluid which is forming its characteristic spikes and pa�erns on the surface. The final rendering is shown on the le� side of each frame
while a particle view is presented on the right side.

Fig. 16. In order to allow for a qualitative comparison with complex geometry, we perform a real experiment (bo�om row) in which we pour a ferrofluid down
the top of a steel helix placed above a strong electromagnet. Our simulation (top row; le�: final rendering, right: particle view) leads to a visually comparable
result.

Fig. 17. We make use of the same steel helix as shown in Figure 16 which is magnetized in order to a�ract ferrofluid from its base to its top. The ferrofluid is
literally climbing up the helix as the field strength increases as shown in this real experiment (bo�om row). The simulation (top row; le�: final rendering, right:
particle view) can reproduce this observation as presented here.
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6 DISCUSSION
As illustrated in Figure 11 and 16–17, we are able to accurately
reproduce key de�ning properties of the dynamics of ferro�uids
including the formation of the characteristic spikes at the surface.
We consider the smooth magnets concept as our core contribu-

tion. We use this concept to derive the analytical magnetic �eld
without singularities if the magnetization �eld is discretized as a
cluster of smooth magnets. The �tted force model as an accurate nu-
merical integration of the Kelvin force between particles is derived
by precomputing the integration partially. Both the approximate
central force and the accurate �tted force are bounded even when
two particles perfectly overlap. Such a bounded force model ensures
the stability in a particle simulation system where particles can
easily get too close. The smooth magnets reduce to point magnets
in the far �eld. Hence, this approach is immediately suitable for the
FMM. It can clearly be observed that our approach scales linearly
compared to the naive approach of quadratic complexity. This allows
for high accuracy and e�ciency as demonstrated in Section 5.

Since the dynamical behavior of ferro�uids often seems to be quite
complex, our approach allowing for their e�cient and large-scale
numerical simulation can potentially open the door for a deeper
understanding of such materials and the identi�cation of new appli-
cation cases within and beyond the �eld of visual computing. We
consider the presented simulations as easily reproducible for the
scienti�c community since our approach can be conveniently in-
corporated into a framework implementing a FMM and a SPH �uid
solver covering surface tension. We further ensure reproducible by
disclosing all relevant details of our implementation and provide all
physical and numerical parameters in Table 2.

6.1 Limitations and Future Work
In this contribution, we employ a linear magnetization law Eq. (1).
As part of future work activities, we can incorporate a more accurate
nonlinear magnetization law into our approach. With the help of
FMM, the complexity of the simulation becomes linear, but it is still
computationally expensive.
The Kelvin force model lead to an outward surface force term,

which forces us to limit �uid expansion to resolve the levitation
artifacts. Switching to the current loop model with an inward mag-
netic surface force term may solve this artifacts. However the inter-
particle force violates momentum conservation when two particles
overlap.

We believe the boundary handling and pressure solving schemes
of the SPH framework can signi�cantly be improved. However, a
detailed evaluation in this regard is not done yet and we consider the
integration of additional �uid solvers in order to potentially increase
the degree of e�ciency as an option for future work. Moreover,
the application of �uid solvers covering additional aspects such as
multiphase �ow would increase the possibilities of our framework.
We also noticed that our magnetic solver is essentially a novel

direct Poisson solver using only Lagrangian particles. It projects a
�eldM to a divergence free �eldM +H where r ·H = �r ·M . How-
ever, the limitation of this Poisson solver is currently its restriction
to the handling of vanishing boundary condition at in�nity if it is

used to project the velocity �eld into a divergence-free �eld. With-
out a proper handling of the non-penetrating boundary condition
v · n = 0, the �uid will penetrate the boundary. We thought about
adding ghost particles at the outside of the boundary borrowing
an idea from electrostatics that induced charges emerging at the
boundary. This is possible future work, but at the moment it remains
to be solved how to determine the induced charge particles. Please
note, that all incompressible SPH variants solve a Poisson equa-
tion on Lagrangian particles. Most of them discretize the Laplacian
[Bender and Koschier 2017; Ihmsen et al. 2014a; Solenthaler and
Pajarola 2009] using the kernel function and solve a linear system.
Our Poisson solver does not discretize the Laplacian, but instead
integrate the right hand side with fundamental solutions to the
Poisson equation. In this regard, this Poisson solver is similar to the
strategy employed by He et al. [2012] where integral approaches
are used.
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APPENDIX

Table 3. Polynomial coe�icients of C1 : q 7! C1(q).
0  q < 1 1  q < 2 2  q < 3 3  q < 4

a4 9.978 · 10�9 �2.764 · 10�9 �1.096 · 10�9 3.799 · 10�10
a3 �2.979 · 10�8 2.869 · 10�8 9.770 · 10�9 �6.263 · 10�9
a2 2.389 · 10�9 �9.945 · 10�8 �2.547 · 10�8 3.947 · 10�8
a1 4.531 · 10�8 1.251 · 10�7 2.650 · 10�9 �1.135 · 10�7
a0 2.446 · 10�11 �2.370 · 10�8 5.007 · 10�8 1.274 · 10�7

Table 4. Polynomial coe�icients of C2 : q 7! C2(q).
0  q < 1 1  q < 2 2  q < 3 3  q < 4

a4 6.695 · 10�8 �3.084 · 10�8 3.504 · 10�9 7.334 · 10�10
a3 �1.617 · 10�7 2.291 · 10�7 �5.259 · 10�8 �9.588 · 10�9
a2 1.682 · 10�8 �5.883 · 10�7 2.788 · 10�7 4.370 · 10�8
a1 1.345 · 10�7 5.611 · 10�7 �6.241 · 10�7 �7.480 · 10�8
a0 1.109 · 10�10 �1.144 · 10�7 4.918 · 10�7 2.341 · 10�8
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